Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Combinatorial and Geometric Methods for Mapping Class Groups of Surfaces

Descripción del proyecto

Explorar las simetrías de las superficies topológicas

La simetría es un concepto fundamental en matemáticas, especialmente cuando se estudian objetos complejos como las superficies topológicas compactas. Las simetrías de estas superficies se describen a través del grupo de clases cartográficas, un tema central en topología. Con el apoyo de las acciones Marie Skłodowska-Curie, el proyecto MapSurf explora la geometría de los grupos de clases de mapas a través de grafos simpliciales, centrándose en el grafo de los pantalones. El gráfico es esencial para comprender las propiedades algebraicas y geométricas de las superficies y las 3-variedades. El proyecto investiga la relación entre las distancias en el gráfico de pantalones y las descomposiciones de superficies, a la vez que aborda las complejidades computacionales del cálculo de estas distancias.

Objetivo

Given a mathematical object, a common theme is to study the symmetries of that object. In this project, the objects are compact topological surfaces, and the group of symmetries is the mapping class group.

In this project, we will investigate simplicial graphs associated to surfaces, which have proved to be key tools in the study of both the algebraic and the geometric structure of mapping class groups. Studying the geometry of groups has proved to be a profound way to study their algebraic properties. We will focus on a graph called the pants graph, whose vertices represent pants decompositions of the surface (collections of homotopy classes of simple closed curves that cut the surface into spheres with three holes). The pants graph is significant not only in the study of mapping class groups, but also in studying the hyperbolic geometry of surfaces and 3-manifolds.

The first part of the project is to understand how distances between vertices in the pants graph are related to the number of intersections between the corresponding pants decompositions. For a related graph, the curve graph, it is known that the distance between two vertices is bounded above by a logarithmic function of the number of intersections, but the methods do not immediately generalise to the pants graph. We will also investigate questions of computational complexity around computing distances in the pants graph. This part of the project will include a secondment at a computer science department.

The second part of the project is to investigate maps from the pants graph to itself which preserve distances up to bounded error (such maps are called quasi-isometries). In a general metric space, the group of quasi-isometries is much bigger than the isometry group, but for most pants graphs, Bowditch proved that the two groups coincide, a property called quasi-isometric rigidity. We aim to prove that the same is true for three of the remaining unsolved cases.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véase: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

Para utilizar esta función, debe iniciar sesión o registrarse

Régimen de financiación

HORIZON-TMA-MSCA-PF-EF -

Coordinador

UNIVERSITE DU LUXEMBOURG
Aportación neta de la UEn
€ 175 920,00
Dirección
2 PLACE DE L'UNIVERSITE
4365 ESCH-SUR-ALZETTE
Luxemburgo

Ver en el mapa

Región
Luxembourg Luxembourg Luxembourg
Tipo de actividad
Institutos de educación secundaria o superior
Enlaces
Coste total
Sin datos

Socios (1)