Opis projektu
Badanie symetrii powierzchni topologicznych
Symetria jest kluczowym pojęciem w matematyce, zwłaszcza w przypadku badania złożonych obiektów, takich jak zwarte powierzchnie topologiczne. Symetrie tych powierzchni są opisywane przez grupę klas odwzorowań, stanowiącą podstawowe zagadnienie w topologii. Realizowany przy wsparciu programu działań „Maria Skłodowska-Curie” projekt MapSurf poświęcony jest geometrii mapowania grup klas poprzez grafy proste, ze szczególnym uwzględnieniem „grafu spodni”. Graf ten jest niezbędny do zrozumienia zarówno algebraicznych, jak i geometrycznych właściwości powierzchni i 3-płaszczyzn. Przedmiotem projektu jest zbadanie związku między odległościami w grafie spodni a rozkładami powierzchni, przy jednoczesnym uwzględnieniu złożoności obliczeniowej obliczania tych odległości.
Cel
Given a mathematical object, a common theme is to study the symmetries of that object. In this project, the objects are compact topological surfaces, and the group of symmetries is the mapping class group.
In this project, we will investigate simplicial graphs associated to surfaces, which have proved to be key tools in the study of both the algebraic and the geometric structure of mapping class groups. Studying the geometry of groups has proved to be a profound way to study their algebraic properties. We will focus on a graph called the pants graph, whose vertices represent pants decompositions of the surface (collections of homotopy classes of simple closed curves that cut the surface into spheres with three holes). The pants graph is significant not only in the study of mapping class groups, but also in studying the hyperbolic geometry of surfaces and 3-manifolds.
The first part of the project is to understand how distances between vertices in the pants graph are related to the number of intersections between the corresponding pants decompositions. For a related graph, the curve graph, it is known that the distance between two vertices is bounded above by a logarithmic function of the number of intersections, but the methods do not immediately generalise to the pants graph. We will also investigate questions of computational complexity around computing distances in the pants graph. This part of the project will include a secondment at a computer science department.
The second part of the project is to investigate maps from the pants graph to itself which preserve distances up to bounded error (such maps are called quasi-isometries). In a general metric space, the group of quasi-isometries is much bigger than the isometry group, but for most pants graphs, Bowditch proved that the two groups coincide, a property called quasi-isometric rigidity. We aim to prove that the same is true for three of the remaining unsolved cases.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta geometria
- nauki przyrodnicze matematyka matematyka czysta matematyka dyskretna teoria grafów
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2022-PF-01
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
4365 ESCH-SUR-ALZETTE
Luksemburg
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.