Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

LEJO: Learned Approaches for Spatial Join Processing.

Descrizione del progetto

Trasformare l’elaborazione dei dati spaziali con l’apprendimento automatico

Nell’era digitale, in cui la maggior parte dei dati sono spaziali, l’efficienza delle operazioni sui dati spaziali è fondamentale. I tradizionali approcci di connessione spaziale, parte integrante di applicazioni come la gestione del traffico e il controllo della robotica, fanno i conti con le inefficienze derivanti dalla crescente complessità dei set di dati. Con il sostegno delle azioni Marie Skłodowska-Curie, il progetto LEJO sfrutterà l’apprendimento automatico per rivoluzionare l’elaborazione delle connessioni spaziali. L’obiettivo è quello di comprendere le distribuzioni dei dati spaziali, introducendo approcci appresi per le connessioni spaziali binarie e multidirezionali. Risolvendo i colli di bottiglia, implementando un partizionamento consapevole della distribuzione e progettando indici basati su modelli, LEJO promette impatti reali nelle applicazioni relative ai dati spaziali. Il progetto promuove lo scambio di conoscenze, combinando l’esperienza nell’apprendimento automatico con la gestione dei dati spaziali per plasmare il futuro dell’elaborazione dei dati in Europa e oltre.

Obiettivo

Arguably 80% of all data is spatial. This calls for highly efficient and effective spatial data operations. Among them, spatial joins are frequently needed as a key primitive in various applications such as traffic management, robotics control, location-based services and even human brain modelling. However, existing spatial join approaches follow the traditional filter-and-refinement paradigm that is data distribution-oblivious. As a result, existing approaches are increasingly inefficient as spatial datasets to be joined become larger and more complex. The project LEJO is intended to make use of machine learning techniques to better understand the distributions of spatial data, and accordingly design learned approaches for highly efficient spatial join processing. Specifically, the research actions of LEJO include (1) learned approaches for binary spatial joins of memory-resident data; (2) learned approaches for binary spatial joins of disk-resident data; (3) learned approaches for multi-way spatial joins. The research actions will mainly concern analysis of the bottlenecks of existing approaches, design of distribution-aware space/data partitioning, design of learned model based indexes and join algorithms, and implementation and evaluation of the proposed techniques. These research actions, as well as project planning and management, will significantly strengthen the fellows research profile and manage skill. This in turn will put him in a considerably better position for future career development after the project. Moreover, a two-way knowledge transfer is expected as LEJO combines the fellows expertise in machine learning and the host universitys expertise in spatial data management. Focusing on the challenging intersection of spatial data management and machine learning, LEJO will not only advance the frontier research in the academia but also bring about potential impacts on many spatial data application domains in and beyond Europe.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) HORIZON-MSCA-2022-PF-01

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

ROSKILDE UNIVERSITET
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 230 774,40
Indirizzo
Universitetsvej 1
4000 Roskilde
Danimarca

Mostra sulla mappa

Regione
Danmark Sjælland Østsjælland
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partner (1)

Il mio fascicolo 0 0