Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Random Matrix and Integrable Systems

Obiettivo

The main topic of this proposal is the study of the Statistical Mechanics of Integrable systems, a particular class of dynamical systems for which the behaviour is fully predictable from the initial data. All relevant information about the dynamics is encoded in a particular matrix L, called Lax matrix. We want to compute the maximum amplitude for the solution of the Ablowitz-Laddik lattice, and the correlation functions for the Volterra lattice, and the Exponential Toda one. The first quantity is instrumental to study the phenomenon of rouge waves formations, and the second one to compute transport coefficients of specific lattices. To compute these quantities, we need to obtain the distribution and the fluctuations of the eigenvalues of the Lax matrix when the initial data are sample according to a Generalized Gibbs Ensemble, thus the Lax matrix becomes a random matrix. To study these objects, we use Large Deviations principles. Furthermore, we also considered the focusing Ablowitz--Laddik lattice, the focusing Schur flow, and the family of Itoh--Narita--Bogoyavleskii lattices. The eigenvalues of the Lax matrices of these systems, when the initial data is sample according to a Generalized Gibbs Ensemble, lay on the complex plane. We plan to compute the density of states, and the joint eigenvalues distribution of the random Lax matrices by using the Inverse Scattering Transform, that is a canonical transformation between the physical variables and the spectral variables of the Lax matrices, the Hermitization technique and the Brown measure characterization. In the end, thanks to this analysis, we will be able to define some new random matrix ensembles on the complex plane, for which it is possible to compute the eigenvalues distribution, and the joint eigenvalues density explicitly. So, we will define some new beta-ensembles.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) HORIZON-MSCA-2022-PF-01

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 195 914,88
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partner (1)

Il mio fascicolo 0 0