Obiettivo
ALcHyMiA will make substantial progress in applied mathematics, targeting long-time stable and self-consistent simulations in general relativity and high energy density problems, via the development of new and effective structure preserving numerical methods with provable mathematical properties. We will devise innovative schemes for hyperbolic partial differential equations (PDE) which at the discrete level exactly preserve all the invariants of the continuous problem, such as equilibria, involutions and asymptotic limits. Next to fluids and magnetohydrodynamics, key for benchmarks and valuable applications on Earth, we target a new class of first order hyperbolic systems that unifies fluid and solid mechanics and gravity theory. This allows to study gravitational waves, binary neutron stars and accretion disks around black holes that require the coupled evolution of matter and spacetime. Here, high resolution and minimal dissipation at shocks and moving interfaces are crucial and will be achieved by groundbreaking direct Arbitrary-Lagrangian-Eulerian (ALE) methods on moving Voronoi meshes with changing topology. These are necessary to maintain optimal grid quality even when following rotating compact objects, complex shear flows or metric torsion. They also ensure rotational invariance, entropy stability and Galilean invariance in the Newtonian limit. The breakthrough of our new Finite Volume and Discontinuous Galerkin ALE schemes lies in the geometrical understanding and high order PDE integration over 4D spacetime manifolds. The high-risk high-gain challenge is the design of smart DG schemes with virtual, bound-preserving, genuinely nonlinear data-dependent function spaces, taking advantage of the Voronoi properties. Finally, it is an explicit mission of ALcHyMiA to grow a solid scientific community, sharing know-how by tailored dissemination activities from top-level schools to carefully organized international events revolving around personalized interactions.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura topologia
- scienze naturali scienze fisiche astronomia astrofisica
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali equazioni differenziali parziali
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
- First order Hyperbolic Partial Differential Equations (PDE) with involutions
- High order methods on manifolds
- Arbitrary-Lagrangian-Eulerian (ALE) methods on moving Voronoi meshes with topology changes
- Finite Volume (FV) and Discontinuous Galerkin (DG) schemes
- Virtual Finite Element methods (VEM)
- Structure Preserving (SP) schemes
- Well Balanced (WB) methods
- bound-preserving schemes
- Mesh optimization
- polytopes
- Einstein field equations
- unified model of continuum mechanics
- telepar
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-ERC - HORIZON ERC Grants
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2023-STG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
37129 Verona
Italia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.