Project description
A closer look at computer vision
Since the late 1950s, Computer Vision (CV) has been pivotal in realising human-like intelligence and perception through artificial intelligence (AI). Yet, today’s CV systems face challenges with power consumption and reliability, especially in adverse conditions like fog, darkness, and sunlight. The global CV market is valued at over EUR 11 billion. In this context, the EU-funded 2DNEURALVISION project emerges as a game-changer. By developing integrated photonic and electronic components, including a 2DM enhanced wide-spectrum image sensor and optical neural network, the project aims to create low-power, all-weather, all-light CV systems. Expect groundbreaking improvements across sectors like automotive, AR/VR, robotics, and mobile devices, as these advancements pave the way for a new era of computer vision.
Objective
From the late 1950s, Computer Vision (CV), a significant field of artificial intelligence (AI), began to be the tool to realize human intelligence and perception. Today, the global computer vision market has a value of over $11 billion and will reach $19 billion in 2027. Current computer vision systems suffer from high power consumption and limited reliability due to the low amount of information captured and sensor malfunction in adverse conditions such as fog, darkness, and bright sunlight. The 2DNEURALVISION project aims to develop the enabling photonic and electronic integrated circuit components for a novel low-power consumption, any weather, any light computer vision system. These components are a 2DM enhanced wide-spectrum image sensor and optical neural network with enabling 2DM components. Non-toxic materials and new waferscale, CMOS-compatible back-end-of-line integration processes for 2DMs will be developed to show compatibility with high-volume markets. The developments in the 2DNEURALVISION project will result in reliable (any weather, any light), low cost (1000x lower), low power consumption (30x lower), and small form factor (1000x lower) computer vision systems. This will have enormous societal impacts by enabling disruptive improvements in the automotive, AR/VR, service robotic, and mobile device sectors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.3 - Emerging enabling technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2022-DIGITAL-EMERGING-02
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08860 Castelldefels
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.