Projektbeschreibung
Mit der Mathematik der Diffusion rechnen
Die Diffusion stellt in den physikalischen Wissenschaften ein grundlegendes Konzept dar, das sich auf ganz unterschiedliche Bereiche wie etwa die Physik, Geometrie und Wahrscheinlichkeitsrechnung auswirkt. Ihre mathematische Erforschung, die im 19. Jahrhundert begann, bildet die Grundlage vieler Phänomene von der Wärmeübertragung bis zur Teilchenbewegung. Zahlreiche Fragen zur Mathematik der Diffusion blieben jedoch bislang unbeantwortet, was insbesondere im Zusammenhang mit komplexen physikalischen und geometrischen Systemen gilt. Die Lösung dieser herausfordernden Probleme könnte unser Verständnis sowohl der klassischen als auch der neu aufkommenden Diffusionsprozesse voranbringen. In diesem Zusammenhang befasst sich das Team des ERC-finanzierten Projekts SSNSD mit diesen Fragen und verfolgt dabei zwei zentrale Ansätze. Erstens werden stabile Lösungen für Reaktionsdiffusionsgleichungen untersucht. Zweitens werden nicht dem Standard entsprechende Diffusionen wie die Boltzmann-Gleichung und Lévyprozesse erkundet, um die Grenzen des mathematischen und physikalischen Wissens zu erweitern.
Ziel
"The concept of diffusion is ubiquitous in the physical sciences. From the mathematical point of view, its study started in the early 19th century with the development of PDE theory, and has many connections to Physics, Probability, Geometry, and Functional Analysis. This project aims to answer several outstanding questions related to the mathematics of diffusion.
The proposal is divided into two blocks. The first one corresponds to the study of stable solutions to reaction-diffusion PDE, and more precisely the classification of global stable solutions in the physical space (i.e. in 3D) for a general class of problems including the Allen-Cahn, the Alt-Phillips, or the thin Alt-Caffarelli equations. We will also investigate the same question for complex-valued solutions in 2D, which arises in the construction of travelling waves for the Gross-Pitaevskii equation. The second block corresponds to nonstandard diffusions. In particular, we will study the Boltzmann equation (a fundamental model in statistical mechanics), nonlocal diffusions (deeply related to Lvy processes and ""anomalous diffusions''), as well as the porous medium equation (a classical nonlinear PDE that arises in various physical models in which diffusion is ""slow''). The highly ambitious goals of the project are motivated by some recent results obtained by the PI in these areas.
"
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Geometrie
- Naturwissenschaften Mathematik reine Mathematik mathematische Analyse Differentialgleichungen partielle Differentialgleichungen
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2023-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
08007 BARCELONA
Spanien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.