Descrizione del progetto
Chiarire la disfunzione delle proteine che legano l’RNA in condizioni di malattia
Le proteine che legano l’RNA, essenziali per l’espressione genica, riconoscono centinaia di trascritti e formano ampie reti di regolazione; in caso di disfunzione, ne deriva l’insorgenza di numerose malattie, tra cui i disturbi neurodegenerativi. Il progetto TDP-Assembly, finanziato dal CER, si concentrerà sui meccanismi molecolari che determinano la disfunzione della proteina TDP-43 che lega l’RNA, alla base di diverse patologie neurodegenerative. In particolare, TDP-43 può presentare un processo di autoassemblaggio aberrante da cui possono derivare errori nell’elaborazione dell’RNA. TDP-Assembly si avvarrà di approcci di biologia molecolare e sintetica al fine di manipolare l’autoassemblaggio di TDP-43 nelle cellule e di studiare il modo in cui ciò influisce sulle funzioni essenziali di tale proteina. La mappatura di vari processi e funzioni di autoassemblaggio potrebbe chiarire il ruolo svolto dall’autoassemblaggio aberrante nelle malattie neurodegenerative.
Obiettivo
Neurodegenerative disorders are an enormous societal burden and we lack therapies that target these diseases at their origins. To develop therapies, we need to understand what goes wrong at the molecular level. I uncovered key mechanisms that cause RNA-binding proteins, such as TDP-43, to dysfunction and drive neurodegenerative processes. I discovered that RNA-binding proteins self-assemble into ribonucleoprotein granules that are the likely origins of RNA-binding protein aggregates. More recently, my group and I revealed aberrant phase transitions of condensed RNA-binding proteins occurring in disease and identified fundamental mechanisms by which such phase transitions are regulated in cells.
In TDP-Assembly, I now want to find out why these proteins exhibit a self-assembly behavior that apparently risks pathological aggregation. My hypothesis is that self-assembly is essential for their many functions in gene regulation, and that different types of self-assemblies, e.g. small clusters or fluid or solid condensates, mediate different functions in cells. Using TDP-43 as a paradigm, I will test this hypothesis to ultimately understand the molecular basis of RNA-binding protein dysfunction in neurodegeneration.
To achieve this goal, I will use synthetic biology approaches to rationally tune self-assembly of TDP-43 in cells. I will study how altered TDP-43 self-assembly affects its known molecular functions, i.e. regulation of transcription, alternative splicing, and translation. Transcriptome and proteome analyses will draw a systems biology map of altered TDP-43 self-assembly and might lead us to novel functions of TDP-43 self-assembly. Ultimately, I will address how TDP-43's self-assembly, and thus its functions, are altered by disease-linked mutations in neuronal cells.
TDP-Assembly will forge a new understanding of the functional and pathological relevance of RNA-binding protein self-assembly and might inspire new therapies that target self-assembly processes.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- scienze naturaliscienze biologicheneurobiologia
- scienze naturaliscienze biologichebiochimicabiomolecoleproteineproteomica
- scienze naturaliscienze biologichegeneticamutazione
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Parole chiave
Programma(i)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Argomento(i)
Meccanismo di finanziamento
HORIZON-ERC - HORIZON ERC GrantsIstituzione ospitante
55122 Mainz
Germania