Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

AI-CODE - AI services for COntinuous trust in emerging Digital Environments

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

Prototyping the disinformation detection and next generation of social media services (si apre in una nuova finestra)

Initial versions of the disinformation detection services focusing on next generation social media, as carried out in T4.1

Prototype version of Dynamic Simulator for Media Professionals (si apre in una nuova finestra)

Initial -prototype of the interactive simulator for media professionals allowing users to observe selected functionalities of the simulator and give feedback regarding its design.

Prototyping the Media Asset Annotation and Management (MAAM) service (si apre in una nuova finestra)

Initial versions of services that were built and prototyped in T4.3.

Prototype version of the Personal Companion for media professionals service (si apre in una nuova finestra)

Initial version of the Personal Companion for understanding disinformation for media professionals service.

Prototyping the Trustability and credibility assessment services (si apre in una nuova finestra)

First prototype of the Trustability and credibility assessment services produced in T4.2

Prototyping transparency services for AI-model cards (si apre in una nuova finestra)

Initial versions of transparency services for AI-model cards carried out in T6.2

Quality Plan (si apre in una nuova finestra)

This deliverable will state all the quality procedures to guarantee a successful project implementation.

Adaptation of existing credibility and trust assessment and disinformation detection tools to next-generation social media and AI-generated content (si apre in una nuova finestra)

On the basis of T2.4, this deliverable will complement previous two deliverables and provide recommendations for development of AI-CODE services.

Data Management Plan (si apre in una nuova finestra)

This deliverable will describe how the AI-CODE project manages data throughout its life cycle, in order to be compliant to the regulatory framework.

Functional specifications and technical requirements (si apre in una nuova finestra)

Description of the necessary functionalities and technical requirements of the AI-CODE services based on results from tasks T3.3 und T3.4.

Report on the assessment of the role of novel text and image generative AI methodologies in producing and combating disinformation (si apre in una nuova finestra)

This deliverable will summarise the research performed in T2.2 and T2.3 and describe positive as well as negative consequences of generative AI adopted in social media.

Impact master plan (si apre in una nuova finestra)

Document detailing the project dissemination, and communication plan, outlining the target groups and relevant tailored outreach strategies and the project communication channels.

User-centred requirements definition (si apre in una nuova finestra)

Requirements definition for the defined user groups and use case scenarios based on results of the analysis in T3.1, T3.2 and T3.4.

Report on technological and socio-behavioural characterization of next-generation social media (si apre in una nuova finestra)

This deliverable will summarise the research performed in T2.1 and outline the emerging trust and disinformation risks.

Pubblicazioni

LLMs vs Established Text Augmentation Techniques for Classification: When do the Benefits Outweight the Costs? (si apre in una nuova finestra)

Autori: Čegiň, Ján; Simko, Jakub; Brusilovsky, Peter
Pubblicato in: Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) (NAACL 2025), 2025
Editore: Association for Computational Linguistics
DOI: 10.48550/ARXIV.2408.16502

Effects of diversity incentives on sample diversity and downstream model performance in LLM-based text augmentation (si apre in una nuova finestra)

Autori: Jan Cegin, Branislav Pecher, Jakub Simko, Ivan Srba, Maria Bielikova, Peter Brusilovsky
Pubblicato in: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2024
Editore: Association for Computational Linguistics
DOI: 10.18653/v1/2024.acl-long.710

Authorship Obfuscation in Multilingual Machine-Generated Text Detection (si apre in una nuova finestra)

Autori: Macko, Dominik; Moro, Robert; Uchendu, Adaku; Srba, Ivan; Lucas, Jason Samuel; Yamashita, Michiharu; Tripto, Nafis Irtiza; Lee, Dongwon; Simko, Jakub; Bielikova, Maria
Pubblicato in: Findings of the Association for Computational Linguistics: EMNLP 2024, 2024
Editore: Association for Computational Linguistics
DOI: 10.48550/arXiv.2401.07867

SIDBench: A Python framework for reliably assessing synthetic image detection methods (si apre in una nuova finestra)

Autori: Manos Schinas, Symeon Papadopoulos
Pubblicato in: 3rd ACM International Workshop on Multimedia AI against Disinformation, 2024
Editore: ACM
DOI: 10.1145/3643491.3660277

ModaFact: Multi-paradigm Evaluation for Joint Event Modality and Factuality Detection

Autori: Rovera, Marco; Cristoforetti, Serena; Tonelli,Sara
Pubblicato in: Proceedings of the 31st International Conference on Computational Linguistics, 2025
Editore: Association for Computational Linguistics

A Ship of Theseus: Curious Cases of Paraphrasing in LLM-Generated Texts (si apre in una nuova finestra)

Autori: Tripto, Nafis Irtiza; Venkatraman, Saranya; Macko, Dominik; Moro, Robert; Srba, Ivan; Uchendu, Adaku; Le, Thai; Lee, Dongwon
Pubblicato in: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2024
Editore: Association for Computational Linguistics
DOI: 10.48550/arXiv.2311.08374

MultiSocial: Multilingual Benchmark of Machine-Generated Text Detection of Social-Media Texts (si apre in una nuova finestra)

Autori: Dominik Macko, Jakub Kopál, Robert Moro, Ivan Srba
Pubblicato in: Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2025
Editore: Association for Computational Linguistics
DOI: 10.48550/ARXIV.2406.12549

KInIT at SemEval-2024 Task 8: Fine-tuned LLMs for Multilingual Machine-Generated Text Detection (si apre in una nuova finestra)

Autori: Spiegel, Michal; Macko, Dominik
Pubblicato in: Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), 2024
Editore: Association for Computational Linguistics
DOI: 10.48550/arXiv.2402.13671

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile

Il mio fascicolo 0 0