Project description
Molecular basis of stress-induced protein quality control degradation
Proteins are essential to the body’s many functions. Protein degradation (proteolysis) is the result of nature’s protein quality control (PQC), eliminating damaged proteins so they do not form aggregates like those involved in neurodegenerative disorders such as Alzheimer’s, Huntington’s and Parkinson’s diseases. Regulatory pathways for PQC degradation (PQCD) can change dynamically in response to cellular stress signals, activating degradation to reduce the likelihood of stress-induced proteotoxicity. How this dynamic rewiring occurs is poorly understood and of interest to therapeutic interventions. Funded by the European Research Council, the CellularPQCD will investigate the molecular basis of stress-induced PQCD, specifically the mechanism by which PQC-E3 ubiquitin ligases target damaged proteins for degradation.
Objective
Maintaining the quality of all proteins in an organism is fundamental to life since it ensures tissue function, organismal health, and longevity. Protein quality control (PQC) is achieved by selective degradation of damaged proteins, limiting the formation of protein aggregates and neurodegeneration characteristic of Alzheimers, Huntingtons, and Parkinsons disorders. Important regulators of cellular proteolysis are E3 ubiquitin ligases that target damaged proteins for degradation. However, therapeutically relevant E3 ligases specialized for PQC degradation (PQCD) are largely unknown. PQCD of damaged proteins is a dynamic process that must be coordinated with physiological and environmental challenges to overcome stress-induced proteotoxicity. Despite progress in characterizing regulatory signals for protein degradation, the major challenge in this field is to understand the dynamic rewiring of PQCD pathways under acute and chronic stress conditions. Thus, the overall goal of the proposed research program is to unravel the molecular basis of stress-induced PQCD, which is critical for physiological integrity and health. The mechanistic role of PQC-E3 ubiquitin ligases will be investigated using mammalian cell cultures and the genetic model organism Caenorhabditis elegans, which reflects many conserved human ubiquitin-dependent PQCD pathways and allows for well-defined lifespan studies. This innovative and interdisciplinary research program will combine state-of-the-art proteome analyses with tissue-specific manipulation of stress signals and large-scale genetic studies for identification and characterization of (1) stress-induced PQCD, (2) aggregating damaged proteins, and (3) E3 ligases specialized for PQCD. Importantly, in addition to providing new molecular insights into stress-induced adaptive mechanisms, this research program will lay the foundation for exploring the pathophysiology of aggregation-related neurodegeneration triggered by chronic protein damage.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- medical and health sciences basic medicine neurology dementia alzheimer
- medical and health sciences basic medicine physiology pathophysiology
- medical and health sciences basic medicine neurology parkinson
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
50931 KOLN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.