Description du projet
Une étude se penche l’impact de la théorie ergodique non commutative sur la rigidité des groupes de Lie
La théorie ergodique non-commutative explore le comportement des systèmes dynamiques à travers des algèbres d’opérateurs. De récentes avancées dans ce domaine ont dévoilé d’importants renseignements, notamment une version non commutative du théorème de structure de Nevo-Zimmer, ce qui permet de mieux comprendre la théorie ergodique, la dynamique topologique, la théorie des représentations unitaires et les algèbres d’opérateurs associés à des treillis de rang supérieur. Les principales réalisations sont notamment un analogue non commutatif du théorème des facteurs de Margulis, une preuve solide de la conjecture de rigidité de Connes et la mise en évidence des interactions entre les sous-groupes discrets des groupes de Lie semi-simples et les algèbres d’opérateurs. Le projet NET, financé par le CER, se propose d’étudier la rigidité des caractères et la dynamique des fonctions définies positives, tout en développant des méthodes permettant de résoudre la conjecture de Connes. Les résultats du projet pourraient révéler de nouveaux phénomènes de rigidité dans les groupes de Lie semi-simples de rang supérieur.
Objectif
Noncommutative ergodic theory of higher rank lattices is a current topic that has seen several exciting developments in the last five years. Among these recent advancements, in joint work with Rmi Boutonnet (2019), we proved a noncommutative analogue of Nevo-Zimmer's structure theorem for actions of higher rank lattices on von Neumann algebras. First of all, we derived several novel applications to ergodic theory, topological dynamics, unitary representation theory and operator algebras associated with higher rank lattices. Then we obtained a noncommutative analogue of Margulis' factor theorem that provides strong evidence towards Connes' rigidity conjecture for the group von Neumann algebra of higher rank lattices. These results revealed deep and unexpected interactions between the field of discrete subgroups of semisimple Lie groups and the field of operator algebras.
In this research project, I plan to build upon these recent achievements to develop new directions in noncommutative ergodic theory of higher rank lattices. This research proposal is centered around two main interconnected themes.
Firstly, I plan to work on several problems and conjectures around the dynamics of the space of positive definite functions and character rigidity for higher rank lattices. These include the classification of characters for higher rank lattices of product type, and more general lattices with dense projections in product groups as well as stiffness results for stationary positive definite functions.
Secondly, drawing inspiration from Margulis' superrigidity theorem, I plan to tackle Connes' rigidity conjecture for higher rank lattices by developing a novel strategy combining techniques from boundary theory, C*-algebras and von Neumann algebras. These methods will lead to new rigidity phenomena for operator algebras arising from irreducible lattices in higher rank semisimple connected Lie groups.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2023-ADG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
75230 Paris
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.