Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Noncommutative ergodic theory of higher rank lattices

Projektbeschreibung

Der Einfluss der nichtkommutativen Ergodentheorie auf die Festigkeit von Lie-Gruppen

Die nichtkommutative Ergodentheorie beschreibt das Verhalten dynamischer Systeme über Operatoralgebren. Durch jüngste Fortschritte wurden bedeutende Erkenntnisse gewonnen, zum Beispiel eine nichtkommutative Version des Lemmas von Nevo-Zimmer. Dadurch können Themen wie die Ergodentheorie, topologische Dynamik, die Theorie der unitären Darstellung und Operatoralgebren bei Gittern höherer Ordnung vertieft werden. Zu den wichtigsten Errungenschaften gehören ein nichtkommutatives Gegenstück zum Lemma von Margulis zu Faktoren, ein starker Beweis für die Connes-Vermutung zu Festigkeit und Anzeichen für Wechselwirkungen zwischen diskreten Untergruppen halbeinfacher Lie-Gruppen und Operatoralgebren. Über das ERC-finanzierte Projekt NET soll die Zeichenfestigkeit und die Dynamik positiv definiter Funktionen erforscht werden. Gleichzeitig werden Methoden für die Connes-Vermutung aufgestellt. Mit den Projektergebnissen könnten neue Festigkeitsphänomene in halbeinfachen Lie-Gruppen höherer Ordnung entdeckt werden.

Ziel

Noncommutative ergodic theory of higher rank lattices is a current topic that has seen several exciting developments in the last five years. Among these recent advancements, in joint work with Rmi Boutonnet (2019), we proved a noncommutative analogue of Nevo-Zimmer's structure theorem for actions of higher rank lattices on von Neumann algebras. First of all, we derived several novel applications to ergodic theory, topological dynamics, unitary representation theory and operator algebras associated with higher rank lattices. Then we obtained a noncommutative analogue of Margulis' factor theorem that provides strong evidence towards Connes' rigidity conjecture for the group von Neumann algebra of higher rank lattices. These results revealed deep and unexpected interactions between the field of discrete subgroups of semisimple Lie groups and the field of operator algebras.

In this research project, I plan to build upon these recent achievements to develop new directions in noncommutative ergodic theory of higher rank lattices. This research proposal is centered around two main interconnected themes.

Firstly, I plan to work on several problems and conjectures around the dynamics of the space of positive definite functions and character rigidity for higher rank lattices. These include the classification of characters for higher rank lattices of product type, and more general lattices with dense projections in product groups as well as stiffness results for stationary positive definite functions.

Secondly, drawing inspiration from Margulis' superrigidity theorem, I plan to tackle Connes' rigidity conjecture for higher rank lattices by developing a novel strategy combining techniques from boundary theory, C*-algebras and von Neumann algebras. These methods will lead to new rigidity phenomena for operator algebras arising from irreducible lattices in higher rank semisimple connected Lie groups.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC - HORIZON ERC Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2023-ADG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

ECOLE NORMALE SUPERIEURE
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 2 140 250,00
Adresse
45, RUE D'ULM
75230 Paris
Frankreich

Auf der Karte ansehen

Region
Ile-de-France Ile-de-France Paris
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 2 140 250,00

Begünstigte (1)

Mein Booklet 0 0