Opis projektu
Badanie wpływu niekomutatywnej teorii ergodycznej na sztywność grupy Liego
Niekomutatywna teoria ergodyczna bada zachowanie układów dynamicznych za pomocą algebry operatorowej. Ostatnie postępy w tej dziedzinie doprowadziły do wypracowania istotnych wniosków dotyczących między innymi niekomutatywnej wersji twierdzenia o strukturze Nevo-Zimmera, zwiększając zrozumienie teorii ergodycznej, dynamiki topologicznej, teorii reprezentacji jednostkowych i algebr operatorowych związanych z kratami wyższego rzędu. Kluczowe osiągnięcia obejmują niekomutatywny odpowiednik twierdzenia Margulisa o czynniku, dostarczający mocnych dowodów na przypuszczenie Connesa o sztywności i podkreślający interakcje między dyskretnymi podgrupami półpłynnych grup Liego i algebr operatorowych. Zespół finansowanego ze środków Europejskiej Rady ds. Badań Naukowych projet NET ma na celu zbadanie sztywności postaci i dynamiki dodatnio określonych funkcji, a także opracowanie metod rozwiązania przypuszczenia Connesa. Wyniki tych prac mogą potencjalnie ujawnić nowe zjawiska sztywności w półprostych grupach Liego wyższego rzędu.
Cel
Noncommutative ergodic theory of higher rank lattices is a current topic that has seen several exciting developments in the last five years. Among these recent advancements, in joint work with Rmi Boutonnet (2019), we proved a noncommutative analogue of Nevo-Zimmer's structure theorem for actions of higher rank lattices on von Neumann algebras. First of all, we derived several novel applications to ergodic theory, topological dynamics, unitary representation theory and operator algebras associated with higher rank lattices. Then we obtained a noncommutative analogue of Margulis' factor theorem that provides strong evidence towards Connes' rigidity conjecture for the group von Neumann algebra of higher rank lattices. These results revealed deep and unexpected interactions between the field of discrete subgroups of semisimple Lie groups and the field of operator algebras.
In this research project, I plan to build upon these recent achievements to develop new directions in noncommutative ergodic theory of higher rank lattices. This research proposal is centered around two main interconnected themes.
Firstly, I plan to work on several problems and conjectures around the dynamics of the space of positive definite functions and character rigidity for higher rank lattices. These include the classification of characters for higher rank lattices of product type, and more general lattices with dense projections in product groups as well as stiffness results for stationary positive definite functions.
Secondly, drawing inspiration from Margulis' superrigidity theorem, I plan to tackle Connes' rigidity conjecture for higher rank lattices by developing a novel strategy combining techniques from boundary theory, C*-algebras and von Neumann algebras. These methods will lead to new rigidity phenomena for operator algebras arising from irreducible lattices in higher rank semisimple connected Lie groups.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.1 - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-ERC - HORIZON ERC Grants
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2023-ADG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
75230 Paris
Francja
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.