Projektbeschreibung
Ausweitung des Potenzials von Phi-Graphen mit geringer Dichte
Die Analyse von Verkehrsnetzen ist ein florierendes Forschungs- und Anwendungsgebiet, aber bei Verkehrsnetzgraphen besteht die Herausforderung, reale Verkehrsnetze aufgrund spezieller und restriktiver Graphenklassen genau darzustellen. Phi-Graphen mit geringer Dichte, eine Art geometrischer Graphen, können die Eigenschaften realer Verkehrsnetze besser abbilden. Ihre Eigenschaften sind jedoch nicht gut bekannt, was die Entwicklung spezieller Algorithmen behindert. Das über die Marie-Skłodowska-Curie-Maßnahmen unterstützte Projekt GA-TNG zielt darauf ab, grundlegende Strukturen für Phi-Graphen mit geringer Dichte aufzubauen und beweisbar effiziente Spezialalgorithmen für sie zu entwickeln. Damit wird dem Bedarf an einer einfachen und vielseitigen Graphenklasse entsprochen, die eine Vielzahl von realen Verkehrsnetzen genau abbildet.
Ziel
Graphs have been used to analyse transport networks for hundreds of years. However, graphs are general structures and many graph algorithms are very slow. Specialised algorithms are much more efficient but can only be applied to restricted graph classes. Transport network graphs suffer from a lack of efficient specialised algorithms, since most graph classes are too restrictive and do not accurately represent real-world transport networks.
Recent developments have led to geometric graph classes that are tailored to real-world transport networks. One of these geometric graph classes, phi-low-density graphs, captures the property that there are more connections between geographically nearby nodes than geographically distant ones. Unfortunately, the fundamental properties of phi-low-density graphs are not well understood, which has prevented the development of a wide range of specialised algorithms.
My objective is to fill the acute need for a simple and versatile graph class that accurately represents real-world transport networks. My research will allow experts to finally harness the power of specialised algorithms on a wide range of important transport network problems. I will achieve my objectives through two sub-objectives: (1) To build fundamental structures for phi-low-density graphs, and (2) To design provably efficient specialised algorithms for phi-low-density graphs.
I will be support by my host institution (University of Copenhagen), my host group (Basic Algorithms Research Copenhagen), my primary supervisor (Mikkel Abrahamsen), and my secondary supervisor (Rasmus Pagh).
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) HORIZON-MSCA-2023-PF-01
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
1165 KOBENHAVN
Dänemark
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.