Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Abundance of rational points on low-degree del Pezzo surfaces

Ziel

Describing the set of rational solutions to polynomial equations is the oldest field in mathematics and one of the fundamental goals in number theory. In arithmetic geometry such solutions are studied using geometric tools: rational solutions to equations correspond to rational points on the corresponding geometric object.
Fano varieties are among the simplest geometric objects, but still far from fully understood. This makes them a great class to test conjectures and develop new techniques. It is generally believed that Fano varieties, if they have a rational point, should have many, and they should be well-distributed. For curves (dimension 1), this is the case. Fano varieties in dimension 2 are del Pezzo surfaces, and already here there are many open questions. These surfaces have been a very active area of research in the last 50 years.
Del Pezzo surfaces are classified by their degree, an integer between 1 and 9. The lower the degree, the more complex these surfaces become, and especially del Pezzo surfaces of degree 1 are notoriously difficult. Current results on the rational points on these surfaces make use of ad-hoc constructions, and a general geometric approach is missing. This forms a sharp contrast with del Pezzo surfaces of higher degree, and leaves a big gap in the understanding of rational points on Fano varieties.
This project proposes to create a systematic approach to construct rational points on del Pezzo surfaces of degree 1, and use this to prove several different results on abundant rational points for new families of surfaces. This will lead to answering big open questions (unirationality, Hilbert property and weak weak approximation for del Pezzo surfaces of degree 1), and providing evidence towards a long-standing conjecture on rational points on rationally connected varieties. Recent developments on the construction of rational points and low-genus curves on del Pezzo surfaces make this the perfect time to tackle the proposed objectives.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) HORIZON-MSCA-2023-PF-01

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 173 847,36
Adresse
FAHNENBERGPLATZ
79098 Freiburg
Deutschland

Auf der Karte ansehen

Region
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0