Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Abundance of rational points on low-degree del Pezzo surfaces

Cel

Describing the set of rational solutions to polynomial equations is the oldest field in mathematics and one of the fundamental goals in number theory. In arithmetic geometry such solutions are studied using geometric tools: rational solutions to equations correspond to rational points on the corresponding geometric object.
Fano varieties are among the simplest geometric objects, but still far from fully understood. This makes them a great class to test conjectures and develop new techniques. It is generally believed that Fano varieties, if they have a rational point, should have many, and they should be well-distributed. For curves (dimension 1), this is the case. Fano varieties in dimension 2 are del Pezzo surfaces, and already here there are many open questions. These surfaces have been a very active area of research in the last 50 years.
Del Pezzo surfaces are classified by their degree, an integer between 1 and 9. The lower the degree, the more complex these surfaces become, and especially del Pezzo surfaces of degree 1 are notoriously difficult. Current results on the rational points on these surfaces make use of ad-hoc constructions, and a general geometric approach is missing. This forms a sharp contrast with del Pezzo surfaces of higher degree, and leaves a big gap in the understanding of rational points on Fano varieties.
This project proposes to create a systematic approach to construct rational points on del Pezzo surfaces of degree 1, and use this to prove several different results on abundant rational points for new families of surfaces. This will lead to answering big open questions (unirationality, Hilbert property and weak weak approximation for del Pezzo surfaces of degree 1), and providing evidence towards a long-standing conjecture on rational points on rationally connected varieties. Recent developments on the construction of rational points and low-genus curves on del Pezzo surfaces make this the perfect time to tackle the proposed objectives.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2023-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 173 847,36
Adres
FAHNENBERGPLATZ
79098 Freiburg
Niemcy

Zobacz na mapie

Region
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0