Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Analytic methods for Dynamical systems and Geometry

Projektbeschreibung

Analysemethoden in dynamischen Systemen und Probleme geometrischen Ursprungs

Ziel des ERC-finanzierten Projekts ADG ist die Entwicklung neuer mathematischer Werkzeuge zur Untersuchung eines breiten Spektrums dynamischer Systeme mithilfe von Verfahren zur Analyse harmonischer und partieller Differentialgleichungen. Danach werden die neuen Erkenntnisse auf verschiedene Probleme geometrischen Ursprungs angewandt. In der ersten Phase wird der Schwerpunkt auf Systemen liegen, die ein schwach hyperbolisches Verhalten aufweisen und für die Analysemethoden weit weniger bekannt sind, wobei die statistischen Eigenschaften solcher Systeme und die Lösungen für Transport- und/oder kohomologische Gleichungen untersucht werden. Die zweite Phase wird sich auf Fragen der Rigidität in Geometrie und Dynamik konzentrieren, wie z. B. das ausgeprägte Längenspektrum, die Rand- und/oder Linsenrigidität und die Entropievermutung von Katok. Schließlich werden Anosov-Darstellungen und meromorphe Erweiterungen verwandter Poincaré-Reihen durch mikrolokale Verfahren analysiert.

Ziel

The aim of this project is to study a broad class of dynamical systems by using tools from the fields of harmonic analysis and PDEs (semiclassical, microlocal analysis), and to apply these new results to a variety of problems of geometric origin.

In a first part, we will mainly focus on systems exhibiting a weak hyperbolic behaviour (partially, non-uniformly hyperbolic systems) for which analytic techniques are far less understood compared to the uniformly hyperbolic setting. We plan to study statistical properties of such systems, and the regularity of solutions to transport / cohomological equations. Then, we will address rigidity questions in geometry and dynamics such as marked length spectrum or boundary / lens rigidity, Katok's entropy conjecture. In a third part, we aim to study Anosov representations and meromorphic extension of related Poincar series via microlocal techniques. We expect the tools developed in the first part will help to understand part two and three.

1) Statistics of weakly hyperbolic flows, study of transport questions. Ergodicity, mixing, polynomial or exponential mixing of partially hyperbolic / non-uniformly hyperbolic systems. We also plan to study cohomological equations and prove Livv sic-type theorems. Finally, we will study equilibrium measures (existence, uniqueness, and properties) for compact extensions of Anosov diffeos / flows.

2) Geometric and dynamical rigidity for flows / actions. Marked or unmarked length spectrum rigidity conjecture for (non-)uniformly hyperbolic geodesic flows, lens and boundary rigidity, Katok's entropy rigidity conjecture, rigidity of Anosov actions (Katok-Spatzier's conjecture), Kanai's regularity conjecture.

3) Anosov representations. Spectral theory of Anosov actions on infinite volume manifolds, meromorphic extensions of Poincar series. If finite, we aim to compute the value of these series at the spectral parameter 0.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC - HORIZON ERC Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2024-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 479 500,00
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 479 500,00

Begünstigte (1)

Mein Booklet 0 0