Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Motivic Stable Homotopy Theory: a New Foundation and a Bridge to p-Adic and Complex Geometry

Descripción del proyecto

El avance de la geometría algebraica a través de la teoría de homotopías

La geometría algebraica explora las intrincadas estructuras subyacentes a los objetos matemáticos, pero muchos ámbitos siguen restringidos por limitaciones técnicas. En este sentido, el equipo del proyecto MOSHOT, financiado por el Consejo Europeo de Investigación, pretende desentrañar los principios de las teorías de la cohomología en geometría algebraica y analítica ampliando los fundamentos de la teoría de la homotopía estable motivacional. Centrándose en la teoría de la homotopía y la geometría analítica, en MOSHOT se ampliarán los límites de la invariancia homotopía A1 y se explorarán nuevas perspectivas en geometría p-ádica y compleja. Los objetivos del proyecto incluyen el establecimiento de un formalismo de seis funtores, la investigación del núcleo de localización A1 y el desarrollo de técnicas de cálculo en homotopía motivacional inestable. Al conectar la teoría K algebraica con la geometría p-ádica, el equipo de MOSHOT transformará el estudio de estos campos.

Objetivo

This project is centered on the field of algebraic geometry and involves homotopy theory and analytic geometry. The overall goal is to unveil the underlying principles of a large variety of cohomology theories in algebraic and analytic geometry and develop robust foundations that facilitate the study of those cohomology theories from the vantage point of homotopy theory. This will be achieved through innovations of motivic stable homotopy theory beyond the current technical limitations of A1-homotopy invariance. In addition, its interdisciplinary perspective will be advanced, especially in relation to p-adic geometry and complex geometry. The research proposal consists of 5 main objectives, which are organically related to each other. The first objective is to establish a six functor formalism, which would be the most important challenge in non-A1-invariant motivic stable homotopy theory. The second objective is to investigate the kernel of the A1-localization and aims to describe it in terms of p-adic or rational Hodge realization, following the principle of trace methods of algebraic K-theory. In particular, in the p-adic context, this will lead to the p-adic rigidity, which will conclusively connect motivic homotopy theory with p-adic geometry. The third objective is to find out the potential of unstable motivic homotopy theory and develop calculation techniques. The forth objective is to establish a general and universal construction of motivic filtration of localizing invariants, such as algebraic K-theory and topological cyclic homology. The last objective is to explore the analogue in complex geometry, which is an interesting unexplored subject that will pave the way for further developments of motivic homotopy theory for a broader range of analytic geometry.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2024-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

KOBENHAVNS UNIVERSITET
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 470 201,00
Dirección
NORREGADE 10
1165 KOBENHAVN
Dinamarca

Ver en el mapa

Región
Danmark Hovedstaden Byen København
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 470 201,00

Beneficiarios (1)

Mi folleto 0 0