Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Motivic Stable Homotopy Theory: a New Foundation and a Bridge to p-Adic and Complex Geometry

Opis projektu

Rozwój geometrii algebraicznej dzięki teorii homotopii

Geometria algebraiczna bada złożone struktury leżące u podstaw obiektów matematycznych, ale badanie wielu obszarów ograniczają problemy techniczne. Zespół finansowanego ze środków ERBN projektu MOSHOT ma na celu zbadanie zasad teorii kohomologii w geometrii algebraicznej i analitycznej poprzez rozszerzenie podstaw motywacyjnej stabilnej teorii homotopii. Skupiając się na teorii homotopii i geometrii analitycznej, zespół projektu MOSHOT przesunie granice niezmienności A1-homotopii i odkryje nowe perspektywy w geometrii p-adycznej i złożonej. Cele projektu obejmują ustanowienie formalizmu sześciofunktorowego, zbadanie podstaw A1-lokalizacji i opracowanie technik obliczeniowych w niestabilnej homotopii motywicznej. Łącząc algebraiczną teorię K z geometrią p-adyczną, projekt MOSHOT zmieni sposób badania tych dziedzin.

Cel

This project is centered on the field of algebraic geometry and involves homotopy theory and analytic geometry. The overall goal is to unveil the underlying principles of a large variety of cohomology theories in algebraic and analytic geometry and develop robust foundations that facilitate the study of those cohomology theories from the vantage point of homotopy theory. This will be achieved through innovations of motivic stable homotopy theory beyond the current technical limitations of A1-homotopy invariance. In addition, its interdisciplinary perspective will be advanced, especially in relation to p-adic geometry and complex geometry. The research proposal consists of 5 main objectives, which are organically related to each other. The first objective is to establish a six functor formalism, which would be the most important challenge in non-A1-invariant motivic stable homotopy theory. The second objective is to investigate the kernel of the A1-localization and aims to describe it in terms of p-adic or rational Hodge realization, following the principle of trace methods of algebraic K-theory. In particular, in the p-adic context, this will lead to the p-adic rigidity, which will conclusively connect motivic homotopy theory with p-adic geometry. The third objective is to find out the potential of unstable motivic homotopy theory and develop calculation techniques. The forth objective is to establish a general and universal construction of motivic filtration of localizing invariants, such as algebraic K-theory and topological cyclic homology. The last objective is to explore the analogue in complex geometry, which is an interesting unexplored subject that will pave the way for further developments of motivic homotopy theory for a broader range of analytic geometry.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-ERC - HORIZON ERC Grants

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2024-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

KOBENHAVNS UNIVERSITET
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 470 201,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 470 201,00

Beneficjenci (1)

Moja broszura 0 0