Descripción del proyecto
Unir la teoría del cristal de espín y las ecuaciones polinómicas
La intersección de la teoría del cristal de espín y los sistemas polinómicos aleatorios plantea un reto en matemáticas, sobre todo en dimensiones elevadas. Tradicionalmente, dos comunidades distintas han abordado estos problemas: una centrada en las complejidades del mundo real de los modelos del cristal de espín y otra en la resolución de las ecuaciones polinómicas aleatorias, en particular el problema número diecisiete planteado por Steve Smale. El equipo del proyecto PolySpin, financiado por el CEI, pretende tender un puente entre estos campos, utilizando los conocimientos de la teoría del cristal de espín para abordar la versión real, más difícil, del problema de Smale. Mediante la adaptación de algoritmos de optimización avanzados diseñados originalmente para los cristales de espín, en el proyecto se intenta revolucionar nuestra comprensión y métodos para resolver estos sistemas matemáticos complejos, lo que amplía los límites de ambos campos.
Objetivo
The project focuses on two areas in the study of random functions in high-dimensions: mathematical Spin Glass theory and random systems of polynomial equations. Research in these fields is currently conducted by two separate mathematical communities. The study of algorithms for solving random systems has so far mostly focused on the well-known 17th problem of Steve Smale posed in 1998, which originally concerns complex polynomials. Mean-field spin glass models, on the other hand, deal with real random polynomial functions.
However, Smale also posed a real version of his problem, even more difficult and much less understood. The polynomials in the real version of the problem are exactly the spherical pure p-spin models of spin glass theory. This creates a bridge between the two theories.
One part of this project sets out to investigate how this can be exploited, by using the theory of spin glasses to gain insights into real random polynomial systems and the real 17th problem of Smale. We offer a new perspective by viewing the problem of solving a system as a problem of minimizing an appropriate ''energy function'' --- a common, general problem in statistical physics. Most importantly, this approach allows us to build on recent important developments on optimization of spin glasses, and specifically to adapt a Hessian Descent algorithm originally developed for the spherical models to variants of the real 17th problem of Smale.
These recent advances on algorithmic optimization were inspired by a new geometric analysis for the celebrated Thouless-Anderson-Palmer (TAP) approach to the mixed p-spin models from 1977. In another part of the project we wish to extend this analysis to various other spin glass models and use it to design new optimization algorithms. Other geometric problems we seek to solve concern the structure and critical points of full-RSB models, relations of the TAP approach to pure states, and properties of the Gibbs measure.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-ERC - HORIZON ERC Grants
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2024-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
7610001 Rehovot
Israel
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.