Descrizione del progetto
Unire la teoria dei vetri di spin e le equazioni polinomiali
L’intersezione tra la teoria dei vetri di spin e i sistemi polinomiali casuali rappresenta una sfida per la matematica, in particolare nelle alte dimensioni. Tradizionalmente, due comunità distinte hanno affrontato questi problemi: una si è concentrata sulle complessità del mondo reale dei modelli di vetri di spin e l’altra sulla risoluzione di equazioni polinomiali casuali, in particolare il 17º problema posto da Steve Smale. Il progetto PolySpin, finanziato dal CER, cerca di creare un ponte tra questi campi, utilizzando le intuizioni della teoria dei vetri di spin per affrontare la più difficile versione reale del problema di Smale. Adattando algoritmi di ottimizzazione avanzati originariamente progettati per i vetri di spin, il progetto si propone di rivoluzionare la nostra comprensione e gli approcci alla soluzione di questi complessi sistemi matematici, spingendo i confini di entrambi i campi.
Obiettivo
The project focuses on two areas in the study of random functions in high-dimensions: mathematical Spin Glass theory and random systems of polynomial equations. Research in these fields is currently conducted by two separate mathematical communities. The study of algorithms for solving random systems has so far mostly focused on the well-known 17th problem of Steve Smale posed in 1998, which originally concerns complex polynomials. Mean-field spin glass models, on the other hand, deal with real random polynomial functions.
However, Smale also posed a real version of his problem, even more difficult and much less understood. The polynomials in the real version of the problem are exactly the spherical pure p-spin models of spin glass theory. This creates a bridge between the two theories.
One part of this project sets out to investigate how this can be exploited, by using the theory of spin glasses to gain insights into real random polynomial systems and the real 17th problem of Smale. We offer a new perspective by viewing the problem of solving a system as a problem of minimizing an appropriate ''energy function'' --- a common, general problem in statistical physics. Most importantly, this approach allows us to build on recent important developments on optimization of spin glasses, and specifically to adapt a Hessian Descent algorithm originally developed for the spherical models to variants of the real 17th problem of Smale.
These recent advances on algorithmic optimization were inspired by a new geometric analysis for the celebrated Thouless-Anderson-Palmer (TAP) approach to the mixed p-spin models from 1977. In another part of the project we wish to extend this analysis to various other spin glass models and use it to design new optimization algorithms. Other geometric problems we seek to solve concern the structure and critical points of full-RSB models, relations of the TAP approach to pure states, and properties of the Gibbs measure.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-ERC - HORIZON ERC Grants
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2024-STG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
7610001 Rehovot
Israele
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.