Description du projet
Unir la théorie du verre de spin et les équations polynomiales
L’intersection de la théorie des verres de spin et des systèmes polynomiaux aléatoires représente un défi pour les mathématiques, en particulier en haute dimension. Traditionnellement, deux communautés distinctes se sont attaquées à ces problèmes: l’une se concentre sur les complexités réelles des modèles de verre de spin et l’autre sur la résolution d’équations polynomiales aléatoires, notamment le 17e problème de Smale. Le projet PolySpin, financé par le CER, cherche à faire le lien entre ces deux domaines, en utilisant les connaissances de la théorie du verre de spin pour s’attaquer à la version réelle du problème de Smale, qui est plus difficile à résoudre. En adaptant des algorithmes d’optimisation avancés conçus à l’origine pour les verres de spin, le projet vise à révolutionner notre compréhension et nos approches de la résolution de ces systèmes mathématiques complexes, en repoussant les limites des deux domaines.
Objectif
The project focuses on two areas in the study of random functions in high-dimensions: mathematical Spin Glass theory and random systems of polynomial equations. Research in these fields is currently conducted by two separate mathematical communities. The study of algorithms for solving random systems has so far mostly focused on the well-known 17th problem of Steve Smale posed in 1998, which originally concerns complex polynomials. Mean-field spin glass models, on the other hand, deal with real random polynomial functions.
However, Smale also posed a real version of his problem, even more difficult and much less understood. The polynomials in the real version of the problem are exactly the spherical pure p-spin models of spin glass theory. This creates a bridge between the two theories.
One part of this project sets out to investigate how this can be exploited, by using the theory of spin glasses to gain insights into real random polynomial systems and the real 17th problem of Smale. We offer a new perspective by viewing the problem of solving a system as a problem of minimizing an appropriate ''energy function'' --- a common, general problem in statistical physics. Most importantly, this approach allows us to build on recent important developments on optimization of spin glasses, and specifically to adapt a Hessian Descent algorithm originally developed for the spherical models to variants of the real 17th problem of Smale.
These recent advances on algorithmic optimization were inspired by a new geometric analysis for the celebrated Thouless-Anderson-Palmer (TAP) approach to the mixed p-spin models from 1977. In another part of the project we wish to extend this analysis to various other spin glass models and use it to design new optimization algorithms. Other geometric problems we seek to solve concern the structure and critical points of full-RSB models, relations of the TAP approach to pure states, and properties of the Gibbs measure.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2024-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
7610001 Rehovot
Israël
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.