Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Counterfactuals in Minds and Machines

Projektbeschreibung

Vorantreiben der Entscheidungsunterstützung durch kontrafaktisches Denken

Der Mensch ist ein Meister des kontrafaktischen Denkens. Er stellt sich alternative Vergangenheiten vor, um zu beurteilen, was besser oder schlechter hätte verlaufen können. Diese Fähigkeit spielt eine Schlüsselrolle beim Lernen aus begrenzten Erfahrungswerten und bei der Verbesserung der Entscheidungsfindung. Trotz der wachsenden Rolle des maschinellen Lernens für die Entscheidungsunterstützung in Bereichen wie Medizin und Bildung bereitet es den meisten Algorithmen Schwierigkeiten, diese Art der Entscheidungsfindung zu integrieren. Vor diesem Hintergrund möchte das ERC-finanzierte Projekt COUNTERFACT diese Lücke schließen, indem maschinelle Lernmodelle entwickelt werden, die zu kontrafaktischem Denken fähig sind. Diese Modelle werden die Systeme zur Entscheidungsunterstützung optimieren, die menschliche Entscheidungsfindung verbessern und den Rechen- und Datenaufwand verringern, während sie dem Einzelnen helfen, aus früheren Entscheidungen zu lernen und zu besseren Ergebnissen zu kommen.

Ziel

Reasoning about what might have been, about alternatives to our own pasts, is a landmark of human intelligence. Such type of reasoning, called counterfactual reasoning, is often evaluative, specifying alternatives that are in some sense better or worse than our past reality, and has been shown to play a significant role in the ability that humans have to learn from limited past experience and improve their decision making skills over time.

In recent years, there has been an increasing excitement on the potential of machine learning models and algorithms to support human decision making in a variety of high-stakes domains such as medicine, education or science. However, these models and algorithms have been traditionally unable to perform, nor benefit from, counterfactual reasoning. In this project, our goal is to bridge this gap.

We will develop machine learning models and algorithms for automated decision support that are able to perform and benefit from counterfactual reasoning in multiple ways. For example, they will perform counterfactual reasoning about human behavior to anticipate how humans incorporate algorithmic advice into their decisions. This will enable a new generation of decision support systems that can only increase and never decrease the average quality of human decisions. Moreover, they will use the structural similarities and shared properties across different counterfactual decision making scenarios to significantly reduce their computational and data requirements. In addition, these models and algorithms will also help humans learn from their own past decisions by identifying alternative decisions that would have led to better outcomes. Finally, we will perform large-scale human subject studies with both laypersons and experts to evaluate their effectiveness in a wide variety of decision making tasks.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC - HORIZON ERC Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2024-COG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 997 500,00
Adresse
HOFGARTENSTRASSE 8
80539 MUNCHEN
Deutschland

Auf der Karte ansehen

Region
Bayern Oberbayern München, Kreisfreie Stadt
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 997 500,00

Begünstigte (1)

Mein Booklet 0 0