Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Generic regularity of area minimising hypersurfaces and mean curvature flows

Descrizione del progetto

La regolarità generica per far progredire la geometria

In matematica, un modo per comprendere la geometria di uno spazio è studiare le superfici «ottimali» che contiene. Ciononostante, è stato rilevato che, a dimensioni superiori, queste superfici possono sviluppare singolarità in cui la «solita» descrizione matematica non funziona, il che da tempo costituisce un freno ai progressi nella risoluzione di alcuni dei problemi più importanti in tal ambito, dalla comprensione della curvatura alla dimostrazione di teoremi chiave sullo spazio e sulla massa. Il progetto GENREG, finanziato dal CER, affronta questa sfida attraverso il concetto di regolarità generica, ovvero l’idea secondo cui, in presenza di piccole perturbazioni, le strutture geometriche possono diventare più omogenee, oppure addirittura del tutto prive di singolarità. GENREG si propone di estendere questo principio a molteplici aree della geometria e della topologia, dalle ipersuperfici a minimizzazione dell’area ai flussi a curvatura media, aprendo la strada a importanti progressi nei campi della matematica e della fisica teorica.

Obiettivo

Major advances in geometry and topology have been achieved by studying critical points and gradient flows for natural energies, but these analytic methods are hindered when singularities occur. In fact, singularities are the main obstacle in the use of area minimisation in the proof of the positive mass theorem up to dimension 7 and the use of Ricci flow with surgery in the proof of the 3-dimensional Poincaré conjecture. A key observation in geometry and physics is that generic solutions, obtained by small perturbations, can exhibit simpler singularities or even none at all. This phenomenon, called generic regularity, can yield outstanding results. The recent generic regularity breakthroughs by the PI-led group will allow to address fundamental open problems in three areas:

For area-minimising hypersurfaces, we aim to extend generic regularity to all dimensions, building on the PI's work in up to 10 dimensions. This would establish the positive mass theorem in all dimensions, bypassing technical analysis of the singular set of minimisers. It would also allow the resolution of other well-known problems related to scalar curvature.

For mean curvature flow singularities, which are unavoidable, generic flows are expected to encounter only the simplest types. Work of the PI has proven this in 3 and 4 dimensions up to the problem of “multiplicity”. Bamler–Kleiner recently excluded multiplicity in 3 dimensions. Our goal is to prove that multiplicity generically cannot occur in higher dimensions. This would mark major progress towards the Schoenflies conjecture, a main open problem in 4-dimensional topology.

For special Lagrangian submanifolds, fundamental objects in symplectic geometry, we would geometrise Lagrangians in Calabi-Yau manifolds by establishing generic Lagrangian mean curvature flows through singularities. The anticipated contributions to mirror symmetry are expected to impact fields spanning algebra, geometry, topology, and theoretical physics.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
La classificazione di questo progetto è stata convalidata da un essere umano.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2024-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

UNIVERSITY OF WARWICK
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 2 412 795,00
Indirizzo
KIRBY CORNER ROAD UNIVERSITY HOUSE
CV4 8UW COVENTRY
Regno Unito

Mostra sulla mappa

Regione
West Midlands (England) West Midlands Coventry
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0