Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Generic regularity of area minimising hypersurfaces and mean curvature flows

Opis projektu

Rozwój geometrii poprzez ogólną regularność

W matematyce sposobem na zrozumienie geometrii przestrzeni jest zbadanie zawartych w niej „optymalnych” powierzchni. Okazuje się jednak, że w wyższych wymiarach powierzchnie te mogą rozwijać osobliwości, w których „zwykły” opis matematyczny okazuje się nieskuteczny. Przez długi czas blokowało to postęp w rozwiązywaniu niektórych z największych problemów tej dziedziny, od zrozumienia krzywizny po udowodnienie kluczowych twierdzeń dotyczących przestrzeni i masy. Zespół finansowanego przez ERBN projektu GENREG stawia czoła temu wyzwaniu dzięki koncepcji ogólnej regularności: idei, mówiącej o tym, że przy niewielkich perturbacjach struktury geometryczne mogą stać się gładsze lub nawet całkowicie wolne od osobliwości. Badacze mają na celu rozszerzenie tej zasady na wiele obszarów geometrii i topologii (od hiperpowierzchni minimalizujących obszar do przepływów średniej krzywizny), torując drogę do znaczących postępów w matematyce i fizyce teoretycznej.

Cel

Major advances in geometry and topology have been achieved by studying critical points and gradient flows for natural energies, but these analytic methods are hindered when singularities occur. In fact, singularities are the main obstacle in the use of area minimisation in the proof of the positive mass theorem up to dimension 7 and the use of Ricci flow with surgery in the proof of the 3-dimensional Poincaré conjecture. A key observation in geometry and physics is that generic solutions, obtained by small perturbations, can exhibit simpler singularities or even none at all. This phenomenon, called generic regularity, can yield outstanding results. The recent generic regularity breakthroughs by the PI-led group will allow to address fundamental open problems in three areas:

For area-minimising hypersurfaces, we aim to extend generic regularity to all dimensions, building on the PI's work in up to 10 dimensions. This would establish the positive mass theorem in all dimensions, bypassing technical analysis of the singular set of minimisers. It would also allow the resolution of other well-known problems related to scalar curvature.

For mean curvature flow singularities, which are unavoidable, generic flows are expected to encounter only the simplest types. Work of the PI has proven this in 3 and 4 dimensions up to the problem of “multiplicity”. Bamler–Kleiner recently excluded multiplicity in 3 dimensions. Our goal is to prove that multiplicity generically cannot occur in higher dimensions. This would mark major progress towards the Schoenflies conjecture, a main open problem in 4-dimensional topology.

For special Lagrangian submanifolds, fundamental objects in symplectic geometry, we would geometrise Lagrangians in Calabi-Yau manifolds by establishing generic Lagrangian mean curvature flows through singularities. The anticipated contributions to mirror symmetry are expected to impact fields spanning algebra, geometry, topology, and theoretical physics.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja tego projektu została potwierdzona przez człowieka.

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-ERC - HORIZON ERC Grants

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2024-ADG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

UNIVERSITY OF WARWICK
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 2 412 795,00
Adres
KIRBY CORNER ROAD UNIVERSITY HOUSE
CV4 8UW COVENTRY
Zjednoczone Królestwo

Zobacz na mapie

Region
West Midlands (England) West Midlands Coventry
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0