Descripción del proyecto
Replanteamiento de las ecuaciones de evolución desde la óptica del transporte óptimo
Entender cómo evolucionan los sistemas complejos a lo largo del tiempo es un reto fundamental en matemáticas y física. El proyecto OPTiMiSE, financiado por el Consejo Europeo de Investigación, trata de resolver este problema combinando poderosas ideas de la teoría del transporte óptimo con métodos variacionales que describen problemas de evolución como flujos de gradiente y procesos independientes de la velocidad. Al trabajar en espacios de Kantorovich-Wasserstein (en que las medidas de probabilidad sustituyen a las variables tradicionales), los investigadores pretenden revelar conocimientos estructurales más profundos sobre el comportamiento de estos sistemas. El equipo de OPTiMiSE explorará nuevos métodos métricos para abordar cuestiones sin resolver y encontrar nuevas formas de modelar la geometría, la estabilidad y la dinámica de los sistemas en evolución.
Objetivo
Several evolution problems, such as gradient flows or rate-independent processes, are governed by variational principles which are extremely useful for studying the existence, stability, and structural properties of solutions by simple and general constructive approximation methods.
Deep and beautiful ideas from the theory of Optimal Transport have contributed new insights and additional challenging questions to this scenario and have motivated flourishing and original developments. On the one hand, the applications to gradient flows in the Kantorovich-Wasserstein spaces of probability measures reveal the importance, the power, and the flexibility of the metric viewpoint. On the other hand, the interplay with evolutionary problems has in turn brought new ideas and perspectives to Optimal Transport, inspiring a powerful set of techniques for its applications, especially to the analysis and geometry in metric-measure spaces.
In recent years, the PI and his collaborators have given relevant contributions to the general theory of gradient flows, in particular in Kantorovich-Wasserstein spaces, and they have obtained ground-breaking results for metric-measure spaces and Unbalanced Optimal Transport between positive measures with finite mass.
The goal of the project is a wide-ranging analysis which aims to combine and broaden the above themes and perspectives, to address crucial and challenging open problems, and to open up novel research directions:
- new generation results and metric-variational principles for evolution equations,
- the interplay between curvature bounds and convergence of variational approximation schemes,
- a new metric approach to dissipative evolution and saddle-point flows,
- new methods and results for paradigmatic highly nonlinear and non-convex partial differential equations for probability measures,
- the foundation of a mean-field theory for the rate-independent evolution of critical points.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo.
La clasificación de este proyecto ha sido validada por personas.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo.
La clasificación de este proyecto ha sido validada por personas.
- ciencias naturales matemáticas matemáticas aplicadas física matemática
- ciencias naturales matemáticas matemáticas puras geometría
- ciencias naturales matemáticas matemáticas aplicadas estadística y probabilidad
- ciencias naturales matemáticas matemáticas puras análisis matemático ecuaciones diferenciales ecuaciones diferenciales parciales
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
- Gradient Flows
- Dissipative Evolution
- Rate-Independent Processes
- Optimal Transport
- Wasserstein Metric
- Probability Vector Fields
- Variational Methods
- Metric-Measure Spaces
- Unbalanced Optimal Transport
- Hellinger-Kantorovich Metric
- Minimizing Movements
- JKO Scheme
- Evolution Variational Inequalities
- Energetic and BV Solutions
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-ERC - HORIZON ERC Grants
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2024-ADG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
20136 Milano
Italia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.