Description du projet
Faire progresser les concepts mathématiques en informatique
Avec le soutien du programme Actions Marie Skłodowska-Curie, le projet TopAspOfGDST réunit deux domaines des mathématiques, à savoir la topologie ensembliste, qui étudie les formes et les espaces, et la théorie descriptive généralisée des ensembles (GDST en anglais), qui s’intéresse aux structures mathématiques complexes. La GDST peut trouver des applications dans des domaines tels que la logique mathématique, l’informatique et les algorithmes. L’objectif du projet est de créer des liens plus étroits entre la GDST et la topologie, en permettant l’application d’outils mathématiques établis à la GDST. Cela pourrait mener à de nouvelles percées dans les deux domaines et fournir de nouveaux outils théoriques pour résoudre des problèmes complexes de logique, de calcul et d’analyse.
Objectif
"My project lies at the intersection of set-theoretic topology and generalized descriptive set theory (GDST) on uncountable cardinals. Since the 1950s, topology has extensively studied metric spaces and their generalizations, but as foundational questions were largely resolved, research shifted toward new areas. In contrast, GDST is a relatively recent field that has gained considerable interest over the past two decades. Both fields share a common interest in studying (subsets of) the generalized Baire space, but they typically use distinct tools and tackle different questions.
Recently, efforts have been made to bridge these two areas, by introducing appropriate classes of ""Polish-like"" spaces in GDST, allowing the application of established topological tools in GDST while also opening new perspectives in topology. This synergy promises exciting opportunities for innovative research and greater insight in both fields and generates new applications of GDST beyond the well-established ones. However, these efforts have been scattered, with different classes of spaces being used, and they are still in their early stages, leaving much to be explored.
My project aims to strengthen this connection by systematically studying and comparing the various approaches used to incorporate topology into GDST, to establish a unified topological foundation for GDST. In the process, I will also tackle several open questions in topology that have arisen from recent GDST applications.
The project has two primary research goals. The first focuses on extending notions equivalent to metrizability to uncountable cardinals, including concepts like Nagata-Smirnov or Bing bases, uniform spaces, and regular bases derived from Arhangel'skii's Metrization Theorem. The second goal addresses completeness notions for topological spaces without a metric, such as (long) Choquet games, Čech-completeness, and the completeness of uniformities.
"
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2024-PF-01
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
1053 Budapest
Hongrie
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.