Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Universality in phase transitions in random graphs

Descrizione del progetto

Esplorare le transizioni di fase e le proprietà universali nei grafi casuali

Supportato dal programma di azioni Marie Skłodowska-Curie, il progetto GraPhTra si propone di ampliare la comprensione teorica delle transizioni di fase e della loro universalità nei grafi casuali, risolvendo al contempo diverse questioni aperte. Svilupperà un nuovo modello per grafi casuali nell’informatica neuromorfica, anticipando i fattori energetici locali, per dimostrare che la struttura globale degli alberi di Gibbs possiede una transizione di fase universale. Per la fisica, determinerà le condizioni in cui il punto di transizione di fase di percolazione su grafici unimodulari casuali può essere previsto con certezza sulla base di informazioni locali. Nel caso dell’epidemiologia, risolverà una questione di vecchia data dimostrando che la percolazione a lungo raggio e senza scala sui modelli di grafi casuali spaziali mostra una fase con crescita esponenziale del vicinato.

Obiettivo

GraPhTra aims to advance the rigorous theoretical understanding of phase transitions in random graphs and their universal properties, driven by questions in neuromorphic computing, physics, and epidemiology. We will work on three work packages.

-We introduce a new model for random graphs, that are sampled with local energy considerations, inspired by statistical physics and motivated by material science for neuromorphic computing. We use a Gibbs measure to sample a spanning tree of a graph, and by varying the temperature we thus interpolate between the uniform spanning tree and the minimal spanning tree. We demonstrate that the global structure of Gibbsian trees (in the Gromov-Hausdorff-Prokhorov topology) exhibits a phase transition that is universal across various underlying graphs.

-We find conditions under which the position of the percolation phase transition on random unimodular graphs can be reliably estimated using local information. On the way, we resolve a key conjecture on the limiting threshold for Poisson–Voronoi percolation in hyperbolic space as the density of points goes to 0.

-We prove that the spatial random graph models ‘long-range percolation’ and ‘scale-free percolation’ possess a phase where neighbourhoods grow exponentially, ensuring a well-defined reproductive number for spatial SIR (Susceptible → Infected → Recovered) epidemics, answering a long-standing open question.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) HORIZON-MSCA-2024-PF-01

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

RIJKSUNIVERSITEIT GRONINGEN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 217 076,16
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0