Ziel
The area of semiparametric statistics is, in comparison to the areas of fully parametric or nonparametric statistics, relatively unexplored and still in full development. Semiparametric models offer a valid alternative for purely parametric ones, that are known to be sensitive to incorrect model specification, and completely nonparametric models, which often suffer from lack of precision and power. A drawback of semiparametric models so far is, however, that the development of mathematical properties under these models is often a lot harder than under the other two types of models. The present project tries to solve this difficulty partially, by presenting and applying a general method to prove the asymptotic properties of estimators for a wide spectrum of semiparametric models. The objectives of this project are twofold. On one hand we will apply a general theory developed by Chen, Linton and Van Keilegom (2003) for a class of semiparametric Z-estimation problems, to a number of novel research ideas, coming from a broad range of areas in statistics. On the other hand we will show that some estimation problems are not covered by this theory, we consider a more general class of semiparametric estimators (M-estimators called) and develop a general theory for this class of estimators. This theory will open new horizons for a wide variety of problems in semiparametric statistics. The project requires highly complex mathematical skills and cutting edge results from modern empirical process theory.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
ERC-2007-StG
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Gastgebende Einrichtung
1348 LOUVAIN LA NEUVE
Belgien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.