Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-30

The geometry of topological quantum field theories

Objectif

The predictive power of quantum field theory (QFT) is a perpetual driving force in geometry. Examples include the invention of Frobenius manifolds, mixed twistor structures, primitive forms, and harmonic bundles, up to the discovery of the McKay correspondence, mirror symmetry, and Gromov-Witten invariants. Still seemingly disparate, in fact these all are related to topological (T) QFT and thereby to the work by Cecotti, Vafa et al of more than 20 years ago. The broad aim of the proposed research is to pull the strands together which have evolved from TQFT, by implementing insights from mathematics and physics. The goal is a unified, conclusive picture of the geometry of TQFTs. Solving the fundamental questions on the underlying common structure will open new horizons for all disciplines built on TQFT. Hertling’s “TERP” structures, formally unifying the geometric ingredients, will be key. The work plan is textured into four independent strands which gain full power from their intricate interrelations. (1) To implement TQFT, a construction by Hitchin will be generalised to perform geometric quantisation for spaces with TERP structure. Quasi-classical limits and conformal blocks will be studied as well as TERP structures in the Barannikov-Kontsevich construction of Frobenius manifolds. (2) Relating to singularity theory, a complete picture is aspired, including matrix factorisation and allowing singularities of functions on complete intersections. A main new ingredient are QFT results by Martinec and Moore. (3) Incorporating D-branes, spaces of stability conditions in triangulated categories will be equipped with TERP structures. To use geometric quantisation is a novel approach which should solve the expected convergence issues. (4) For Borcherds automorphic forms and GKM algebras their as yet cryptic relation to “generalised indices” shall be demystified: In a geometric quantisation of TERP structures, generalised theta functions should appear naturally.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2007-StG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Contribution de l’UE
€ 417 420,00
Adresse
FAHNENBERGPLATZ
79098 Freiburg
Allemagne

Voir sur la carte

Région
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (2)

Mon livret 0 0