Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Questions of decidability and definability in the Enumeration degrees

Objectif

We propose to ascertain if there is an effective procedure that determines the validity of an arbitrary first order $\forall\exists$-sentence in the upper semi-lattice of the $\Sigma^0_2$ enumeration degrees. It is known that the $\forall$-fragment of the first order theory of the $\Sigma^0_2$ enumeration degrees is decidable. Slaman and Woodin (1996) proved that first order theory of the $\Sigma^0_2$ enumeration degrees is un-decidable and more recently, Kent (unpublished) proved that the $\forall\exists\forall$-fragment of this theory is un-decidable.

This left open the question of whether the $\forall\exists$-fragment is decidable. Answering this question is equivalent to finding an effective procedure that determines, when we are given an arbitrary finite lattice $P$ and finite lattices $Q_0$, ... $Q_n$ which extend $P$, if there is an embedding of $P$ into the $\Sigma^0_2$ enumeration degrees which cannot be extended to an embedding of any of the $Q_i$. Lempp, Slaman and Sorbi (to appear) have shown that the sub-problem where $n = 0$ is decidable.

In order to fully answer the question, we propose to answer the above problem in the following three sub-cases:
Case 1: Let $P$ be an arbitrary finite anti-chain and each $Q_i$ a one point extension of $P$.
Case 2: Let $P$ be an arbitrary finite lattice and each $Q_i$ a one point extension of $P$.
Case 3: Let $P$ be an arbitrary finite anti-chain and each $Q_i$ an arbitrary extension of $P$.

To answer the first case, more research needs to be performed on the properties of Ahmad pairs. In particular, we propose to determine the maximal size of an anti-chain where each two distinct elements form an Ahmad pair. Also, we propose to determine if the join of an Ahmad pair is non-trivially bounded from above. Cases 2 and 3 are extensions of case 1. It is believed that answering these questions will lead to an affirmative solution of the question of whether the $\forall\exists$-fragment is decidable.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP6-2004-MOBILITY-7
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

IIF - Marie Curie actions-Incoming International Fellowships

Coordinateur

UNIVERSITÀ DEGLI STUDI DI SIENA
Contribution de l’UE
Aucune donnée
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0