Ziel
We propose to ascertain if there is an effective procedure that determines the validity of an arbitrary first order $\forall\exists$-sentence in the upper semi-lattice of the $\Sigma^0_2$ enumeration degrees. It is known that the $\forall$-fragment of the first order theory of the $\Sigma^0_2$ enumeration degrees is decidable. Slaman and Woodin (1996) proved that first order theory of the $\Sigma^0_2$ enumeration degrees is un-decidable and more recently, Kent (unpublished) proved that the $\forall\exists\forall$-fragment of this theory is un-decidable.
This left open the question of whether the $\forall\exists$-fragment is decidable. Answering this question is equivalent to finding an effective procedure that determines, when we are given an arbitrary finite lattice $P$ and finite lattices $Q_0$, ... $Q_n$ which extend $P$, if there is an embedding of $P$ into the $\Sigma^0_2$ enumeration degrees which cannot be extended to an embedding of any of the $Q_i$. Lempp, Slaman and Sorbi (to appear) have shown that the sub-problem where $n = 0$ is decidable.
In order to fully answer the question, we propose to answer the above problem in the following three sub-cases:
Case 1: Let $P$ be an arbitrary finite anti-chain and each $Q_i$ a one point extension of $P$.
Case 2: Let $P$ be an arbitrary finite lattice and each $Q_i$ a one point extension of $P$.
Case 3: Let $P$ be an arbitrary finite anti-chain and each $Q_i$ an arbitrary extension of $P$.
To answer the first case, more research needs to be performed on the properties of Ahmad pairs. In particular, we propose to determine the maximal size of an anti-chain where each two distinct elements form an Ahmad pair. Also, we propose to determine if the join of an Ahmad pair is non-trivially bounded from above. Cases 2 and 3 are extensions of case 1. It is believed that answering these questions will lead to an affirmative solution of the question of whether the $\forall\exists$-fragment is decidable.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
FP6-2004-MOBILITY-7
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
IIF - Marie Curie actions-Incoming International Fellowships
Koordinator
SIENA
Italien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.