Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Questions of decidability and definability in the Enumeration degrees

Obiettivo

We propose to ascertain if there is an effective procedure that determines the validity of an arbitrary first order $\forall\exists$-sentence in the upper semi-lattice of the $\Sigma^0_2$ enumeration degrees. It is known that the $\forall$-fragment of the first order theory of the $\Sigma^0_2$ enumeration degrees is decidable. Slaman and Woodin (1996) proved that first order theory of the $\Sigma^0_2$ enumeration degrees is un-decidable and more recently, Kent (unpublished) proved that the $\forall\exists\forall$-fragment of this theory is un-decidable.

This left open the question of whether the $\forall\exists$-fragment is decidable. Answering this question is equivalent to finding an effective procedure that determines, when we are given an arbitrary finite lattice $P$ and finite lattices $Q_0$, ... $Q_n$ which extend $P$, if there is an embedding of $P$ into the $\Sigma^0_2$ enumeration degrees which cannot be extended to an embedding of any of the $Q_i$. Lempp, Slaman and Sorbi (to appear) have shown that the sub-problem where $n = 0$ is decidable.

In order to fully answer the question, we propose to answer the above problem in the following three sub-cases:
Case 1: Let $P$ be an arbitrary finite anti-chain and each $Q_i$ a one point extension of $P$.
Case 2: Let $P$ be an arbitrary finite lattice and each $Q_i$ a one point extension of $P$.
Case 3: Let $P$ be an arbitrary finite anti-chain and each $Q_i$ an arbitrary extension of $P$.

To answer the first case, more research needs to be performed on the properties of Ahmad pairs. In particular, we propose to determine the maximal size of an anti-chain where each two distinct elements form an Ahmad pair. Also, we propose to determine if the join of an Ahmad pair is non-trivially bounded from above. Cases 2 and 3 are extensions of case 1. It is believed that answering these questions will lead to an affirmative solution of the question of whether the $\forall\exists$-fragment is decidable.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP6-2004-MOBILITY-7
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

IIF - Marie Curie actions-Incoming International Fellowships

Coordinatore

UNIVERSITÀ DEGLI STUDI DI SIENA
Contributo UE
Nessun dato
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0