Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Topological dynamics and chaos on compact metric spaces

Obiettivo

"In the paper ""Measure of chaos and a spectral decomposition of dynamical systems of interval"" (which extends Li and Yorke approach stated in their famous paper ""Period three implies chaos"") Schweizer and Smital introduced the definition of distributional chaos. Scientific aim of this project is to study distributional chaos and its relations to other notions known from Topological Dynamics. Main problems we will cosider are the following: - how ''large'' distributionally scrambled sets can be form topological, measure theoretic or dimension theory point of view? - what are sufficient conditions (topological mixing, specification property, topological exactness, shadowing) to ensure distributional scrambled sets being uncountable, perfect, invariant, etc. ? - what are condition not strong enough to imply distributional chaos in general case (e.g. it is known that positive topological entropy or weak mixing belongs to this class)? - are there any other spaces (graphs, dendrites, low-dimensional continua) which guarantee equivalent conditions from Schwaizer and Smital paper to hold (it is known that there is no equivalence in general, in particular in dimension two or zero)? Additionally, we will study shift spaces and their generalizations for a better understanding of the notion of ''complexity'' in the theory of dynamical systems. The research undertaken in this project aims to extend knowledge about chaotic phenomena in dynamical systems. The main aim of the project is to extend knowledge and research experience of the researcher to the level that he is able to prepare his habilitation thesis. The researcher will present obtained results at international meetings. He will extend his scientific collaborations and start new independent lines of research in his career."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2007-2-1-IEF
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IEF - Intra-European Fellowships (IEF)

Coordinatore

UNIVERSIDAD DE MURCIA
Contributo UE
€ 151 568,66
Indirizzo
AVENIDA TENIENTE FLOMESTA S/N - EDIFICIO CONVALECENCIA
30003 Murcia
Spagna

Mostra sulla mappa

Regione
Sur Región de Murcia Murcia
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0