Objectif
Calabi-Yau 3-folds are 6-dimensional spaces with a rich geometrical structure. In Mathematics, Calabi-Yau 3-folds are interesting to Algebraic, Symplectic and Differential Geometers. In Physics, they are essential ingredients for building a universe: String Theory claims the universe has 10 dimensions, and is the product of a large 4-dimensional space-time with a small Calabi-Yau 3-fold. String Theorists made some strange and exciting conjectures about Calabi-Yau 3-folds, known as "Mirror Symmetry". Many of these concern "invariants", numbers associated to the Calabi-Yau 3-fold, which for deep reasons depend on only part of the geometric structure. This proposal concerns "Donaldson-Thomas (D-T) invariants" of Calabi-Yau 3-folds M. These are integers which "count" geometric objects called coherent sheaves on M. The definition of D-T invariants uses algebraic geometry, and requires both a symplectic structure (polarization) and a complex structure, but the invariants are unchanged by deformations of the complex structure. Our goal is to find a new symplectic definition of D-T invariants using gauge theory. Given a compact symplectic 6-manifold with c1=0 we choose a compatible generic almost complex structure J and define new "analytic D-T invariants" which "count" solutions of a gauge-theory equation generalizing Hermitian-Einstein connections. This is a substitute for counting holomorphic vector bundles, the simplest kind of coherent sheaf. The difficult issues concern compactness of the moduli spaces, and understanding limits of solutions. We aim to show these analytic D-T invariants are independent of J, and depend only on M as a symplectic manifold. We aim to formulate a "generalized MNOP conjecture" which expresses usual D-T invariants in terms of our analytic D-T invariants and the Gromov-Witten invariants and Betti numbers of M. This brings D-T invariants into symplectic geometry, and also reveals new symmetries and structure in D-T invariants.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures topologie topologie symplectique
- sciences naturelles sciences physiques physique théorique théorie des cordes
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures algèbre géométrie algébrique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
FP7-PEOPLE-IIF-2008
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Coordinateur
OX1 2JD Oxford
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.