Ziel
Calabi-Yau 3-folds are 6-dimensional spaces with a rich geometrical structure. In Mathematics, Calabi-Yau 3-folds are interesting to Algebraic, Symplectic and Differential Geometers. In Physics, they are essential ingredients for building a universe: String Theory claims the universe has 10 dimensions, and is the product of a large 4-dimensional space-time with a small Calabi-Yau 3-fold. String Theorists made some strange and exciting conjectures about Calabi-Yau 3-folds, known as "Mirror Symmetry". Many of these concern "invariants", numbers associated to the Calabi-Yau 3-fold, which for deep reasons depend on only part of the geometric structure. This proposal concerns "Donaldson-Thomas (D-T) invariants" of Calabi-Yau 3-folds M. These are integers which "count" geometric objects called coherent sheaves on M. The definition of D-T invariants uses algebraic geometry, and requires both a symplectic structure (polarization) and a complex structure, but the invariants are unchanged by deformations of the complex structure. Our goal is to find a new symplectic definition of D-T invariants using gauge theory. Given a compact symplectic 6-manifold with c1=0 we choose a compatible generic almost complex structure J and define new "analytic D-T invariants" which "count" solutions of a gauge-theory equation generalizing Hermitian-Einstein connections. This is a substitute for counting holomorphic vector bundles, the simplest kind of coherent sheaf. The difficult issues concern compactness of the moduli spaces, and understanding limits of solutions. We aim to show these analytic D-T invariants are independent of J, and depend only on M as a symplectic manifold. We aim to formulate a "generalized MNOP conjecture" which expresses usual D-T invariants in terms of our analytic D-T invariants and the Gromov-Witten invariants and Betti numbers of M. This brings D-T invariants into symplectic geometry, and also reveals new symmetries and structure in D-T invariants.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Topologie symplektische Topologie
- Naturwissenschaften Naturwissenschaften theoretische Physik Stringtheorie
- Naturwissenschaften Mathematik reine Mathematik Geometrie
- Naturwissenschaften Mathematik reine Mathematik Algebra algebraische Geometrie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
FP7-PEOPLE-IIF-2008
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Koordinator
OX1 2JD Oxford
Vereinigtes Königreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.