Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Atom interferometry at the Heisenberg limit using an in-cavity Bose-Einstein condensate and quantum non demolition detection

Obiettivo

Inertial sensors using ultracold neutral atoms and atom interferometry techniques have demonstrated performances competing or even beating the more conventional light based interferometers. To further improve their sensitivity, quantum-non demolition (QND) detection schemes are presently investigated in order to engineer the initial state creating correlations between the atoms. Spin squeezed samples have been recently obtained, and it allowed to surpass the shot-noise detection limit. In this new regime the limit is set by the Heisenberg uncertainty principle, which states a 1/N ultimate signal-to-noise ratio. Implementing quantum limited atom interferometry will be a groundbreaking achievement, opening the door to many new advances in terms of both scientific discoveries and technological applications. The proposal merges atom interferometry and QND measurements with cavity cooling quantum electrodynamics (QED), in order to exploit the high degree of control of the atom-radiation interaction. A high finesse cavity will serve both to confine the atomic ensemble with an optical dipole trap, eventually reaching Bose-Einstein Condensation (BEC), and to develop new schemes of QND detection taking advantage of the gain factor provided by the cavity. The ultracold atomic sample will then be levitated against gravity with a sequence of coherent vertical momentum transfers, obtained by periodically shining the freely-falling atoms with phase-locked Raman beams. Keeping the resonance condition for the number of atoms versus time results in the determination of the gravity acceleration, and the measurement will be non-destructive. Finally the gravimeter will be loaded with a squeezed atomic sample, obtained through a QND measurement. Sub--shot--noise sensitivity approaching the Heisenberg limit should then be achieved for the interferometer, whereas a QND detection scheme will allow continuous readout interferometry.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-IEF-2008
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IEF - Intra-European Fellowships (IEF)

Coordinatore

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contributo UE
€ 165 444,54
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0