Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-28

Random walks on hyperbolic groups

Objectif

The project lies at the confluent of different mathematical fields: probability theory, algebra, and geometry. There is a contribution of A. V. Vershik in a special Springer volume about the future of mathematics in the 21st century that points out the prospects and challenges that are comprised in the interplay of probability theory and algebra. Here random walk theory, a branch of probability theory, plays a mayor role. There are two points of view to look at the relation between probability theory, algebra, and geometry. The probabilistic viewpoint concerns all questions regarding the impact of the underlying structure on the behavior of the corresponding random walk. Typically one is interested in transience/recurrence, spectral radius, rate of escape, and central limit theorems. On the other hand, random walks are a useful tool to describe the structure that underlies the random walk. In particular, algebraic and geometric properties can be classified due to the behaviour of the corresponding random walks. The project falls exactly into this topic: we will study random walks on hyperbolic groups. The objectives are to prove a central limit theorem for random walks on hyperbolic groups and provide geometric interpretations of the asymptotic variance. This will arise from a geometric perspective in the flavour of the interpretation for the rate of escape in terms of entropy and requires deeper knowledge of hyperbolic geometry together with inspiration and new ideas. The project will settle the ground for future collaboration, not only between France and Germany but also on an European level, since the host institute and the applicant have strong European contacts. Furthermore, the project can be seen as a continuation and complement of the existing Marie Curie contract ``European Training Courses and Conferences in Group Theory''.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-IEF-2008
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IEF - Intra-European Fellowships (IEF)

Coordinateur

UNIVERSITE D'AIX MARSEILLE
Contribution de l’UE
€ 156 712,58
Adresse
BOULEVARD CHARLES LIVON 58 LE PHARO
13284 Marseille
France

Voir sur la carte

Région
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Bouches-du-Rhône
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (1)

Mon livret 0 0