Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Geometric control methods for heat and Schroedinger equations

Ziel

"The aim of this project of 5 years is to create a research group on geometric control methods in PDEs with the arrival of the PI at the CNRS Laboratoire CMAP (Centre de Mathematiques Appliquees) of the Ecole Polytechnique in Paris (in January 09). With the ERC-Starting Grant, the PI plans to hire 4 post-doc fellows, 2 PhD students and also to organize advanced research schools and workshops. One of the main purpose of this project is to facilitate the collaboration with my research group which is quite spread across France and Italy. The PI plans to develop a research group studying certain PDEs for which geometric control techniques open new horizons. More precisely the PI plans to exploit the relation between the sub-Riemannian distance and the properties of the kernel of the corresponding hypoelliptic heat equation and to study controllability properties of the Schroedinger equation. In the last years the PI has developed a net of high level international collaborations and, together with his collaborators and PhD students, has obtained many important results via a mixed combination of geometric methods in control (Hamiltonian methods, Lie group techniques, conjugate point theory, singularity theory etc.) and noncommutative Fourier analysis. This has allowed to solve open problems in the field, e.g. the definition of an intrinsic hypoelliptic Laplacian, the explicit construction of the hypoelliptic heat kernel for the most important 3D Lie groups, and the proof of the controllability of the bilinear Schroedinger equation with discrete spectrum, under some ""generic"" assumptions. Many more related questions are still open and the scope of this project is to tackle them. All subjects studied in this project have real applications: the problem of controllability of the Schroedinger equation has direct applications in Nuclear Magnetic Resonance; the problem of nonisotropic diffusion has applications in models of human vision."

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2009-StG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-SG - ERC Starting Grant

Gastgebende Einrichtung

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
EU-Beitrag
€ 785 000,00
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0