Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Geometric control methods for heat and Schroedinger equations

Obiettivo

"The aim of this project of 5 years is to create a research group on geometric control methods in PDEs with the arrival of the PI at the CNRS Laboratoire CMAP (Centre de Mathematiques Appliquees) of the Ecole Polytechnique in Paris (in January 09). With the ERC-Starting Grant, the PI plans to hire 4 post-doc fellows, 2 PhD students and also to organize advanced research schools and workshops. One of the main purpose of this project is to facilitate the collaboration with my research group which is quite spread across France and Italy. The PI plans to develop a research group studying certain PDEs for which geometric control techniques open new horizons. More precisely the PI plans to exploit the relation between the sub-Riemannian distance and the properties of the kernel of the corresponding hypoelliptic heat equation and to study controllability properties of the Schroedinger equation. In the last years the PI has developed a net of high level international collaborations and, together with his collaborators and PhD students, has obtained many important results via a mixed combination of geometric methods in control (Hamiltonian methods, Lie group techniques, conjugate point theory, singularity theory etc.) and noncommutative Fourier analysis. This has allowed to solve open problems in the field, e.g. the definition of an intrinsic hypoelliptic Laplacian, the explicit construction of the hypoelliptic heat kernel for the most important 3D Lie groups, and the proof of the controllability of the bilinear Schroedinger equation with discrete spectrum, under some ""generic"" assumptions. Many more related questions are still open and the scope of this project is to tackle them. All subjects studied in this project have real applications: the problem of controllability of the Schroedinger equation has direct applications in Nuclear Magnetic Resonance; the problem of nonisotropic diffusion has applications in models of human vision."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2009-StG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contributo UE
€ 785 000,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0