Ziel
Energy storage is recognised as a key element for energy networks in the near future. Regarding short-term power delivery and high duty cycle applications, such as stabilization of grids, traction networks and drive-trains of hybrid or full-electric vehicles, it is widely accepted that the use of energy storage systems (ESS) can lead to energy savings. This kind of networks needs ESS capable of storing and releasing energy in the power range from a few hundreds of kW up to 1MW, with a high duty cycle. Dealing with these applications, and among other ESS, supercapacitors (SC) appear as a very promising energy storage technology due to their high power density, high efficiency and very long life cycle. However, it is necessary a step forward in increasing the energy density in order to cover the whole range of specifications and to be fully competitive regarding to the cost of the stored kW-h, mainly over batteries. The main objective of this project is to develop a new generation high energy supercapacitor based system (HESCAP system), capable of storing ten times more energy than the reported State of the Art SC technology, but keeping the high power density, long life cycle and total capital cost of currently available supercapacitors. This novel approach is based on the recent developments related with the applications of advanced carbide-derive carbons together with nanoparticulate metal oxides in this new generation supercapacitors. Such materials have shown an amazing behaviour not only in terms of intrinsic specific capacitance, but also in their positive effects on the capacitance of conventional carbon electrodes, when they are deposited as nanoporous coatings. The expected impact of the HESCAP system into these stationary or dual-use applications will be a drastic reduction of the volume and weight for a given energy rate, together with a reduction of the cost of the stored kW-h.
Wissenschaftliches Gebiet
Programm/Programme
Aufforderung zur Vorschlagseinreichung
FP7-ENERGY-2009-1
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
CP - Collaborative project (generic)Koordinator
20018 San Sebastian
Spanien