Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

New analytical and numerical methods in wave propagation

Obiettivo

This project is aimed at performing a systematic analysis, providing a real breakthough, of the combined effect of wave propagation and numerical discretizations, in order to help in the development of efficient numerical methods mimicking the qualitative properties of continuous waves. This is an important issue for its many applications: irrigation channels, flexible multi-structures, aeronautic optimal design, acoustic noise reduction, electromagnetism, water waves, nonlinear optics, nanomechanics, etc. The superposition of the present state of the art in Partial Differential Equations (PDE) and Numerical Analysis is insufficient to understand the spurious high frequency numerical solutions that the interaction of wave propagation and numerical discretizations generates. There are some fundamental questions, as, for instance, dispersive properties, unique continuation, control and inverse problems, which are by now well understood in the context of PDE through the celebrated Strichartz and Carleman inequalities, but which are unsolved and badly understood for numerical approximation schemes. The aim of this project is to systematically address some of these issues, developing new analytical and numerical tools, which require new significant developments, much beyond the frontiers of classical numerical analysis, to incorporate ideas and tools from Microlocal and Harmonic Analysis. The research to be developed in this project will provide new analytical tools and numerical schemes. Simultaneously, it will contribute to significant progress in some applied fields in which the issues under consideration play a key role. In parallel with the analytical and numerical analysis of these problems, a mathematical simulation platform will be set to perform computer simulations and explore and visualize some of the most relevant and complex phenomena.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2009-AdG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-AG - ERC Advanced Grant

Istituzione ospitante

BCAM - BASQUE CENTER FOR APPLIED MATHEMATICS
Contributo UE
€ 1 662 999,80
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0