Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-28

The Geometry of Severi varieties on toric surfaces

Objectif

I propose to study the geometry of Severi varieties. Roughly speaking, Severi varieties parameterize (irreducible) curves of a given geometric genus in a linear system on an algebraic surface. Introduced by Severi in the 1920s, Severi varieties have been intensively studied (mostly in the plane case and in characteristic zero) by many algebraic geometers, such as Zariski, Fulton, Harris, Ran, Kontsevich, Caporaso, Vakil, and Mikhalkin. Despite this intensive study of Severi varieties, many questions have remained open, e.g. the case of positive characteristic, for which neither the dimension nor the irreducibility is known and for which enumerative formulas are also not known. In characteristic zero, the irreducibility property is not known for any surfaces other than the projective plane and Hirzebruch surfaces. (The irreducibility property is, however, known for rational curves in some cases.) In this study, I propose to investigate the geometry of Severi varieties on toric surfaces. In positive characteristic, I intend to: prove dimension formula; construct examples of toric surfaces admitting reducible Severi varieties and classify all such surfaces; describe the geometry of a general curve of a given geometric genus on a toric surface (note that as opposed to the case in characteristic zero, such a curve need not be nodal, and the description of its geometry will include the classification of its singularities); and generalize Mikhalkin's tropical enumerative formulas to this case (it should be emphasized that Severi varieties are not defined over the integers, and their degrees depend on the characteristic). In characteristic zero, I intend to prove the irreducibility property for Severi varieties on toric surfaces. The main tools that will be developed and applied in this research are drawn from deformation theory of schemes, morphisms, and stacks; and from toric and tropical geometries (see part B of the proposal for details).

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2009-RG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IRG - International Re-integration Grants (IRG)

Coordinateur

BEN-GURION UNIVERSITY OF THE NEGEV
Contribution de l’UE
€ 100 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0