Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Constraint Satisfaction Problems: Algorithms and Complexity

Obiettivo

The complexity of Constraint Satisfaction Problems (CSPs) has become a major common research focus of graph theory, artificial intelligence, and finite model theory. A recently discovered connection between the complexity of CSPs on finite domains to central problems in universal algebra led to additional activity in the area.

The goal of this project is to extend the powerful techniques for constraint satisfaction to CSPs with infinite domains. The generalization of CSPs to infinite domains enhances dramatically the range of computational problems that can be analyzed with tools from constraint satisfaction complexity. Many problems from areas that have so far seen no interaction with constraint satisfaction complexity theory can be formulated using infinite domains (and not with finite domains), e.g. in phylogenetic reconstruction, temporal and spatial reasoning, computer algebra, and operations research. It turns out that the search for systematic complexity classification in infinite domain constraint satisfaction often leads to fundamental algorithmic results.

The generalization of constraint satisfaction to infinite domains poses several mathematical challenges: To make the universal algebraic approach work for infinite domain constraint satisfaction we need fundamental concepts from model theory. Luckily, the new mathematical challenges come together with additional strong tools, such as Ramsey theory or results from model theory. The most important challgenges are of an algorithmic nature: finding efficient algorithms for significant constraint languages, but also finding natural classes of problems that can be solved by a given algorithm.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2010-StG_20091028
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

TECHNISCHE UNIVERSITAET DRESDEN
Contributo UE
€ 223 951,60
Indirizzo
HELMHOLTZSTRASSE 10
01069 Dresden
Germania

Mostra sulla mappa

Regione
Sachsen Dresden Dresden, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (2)

Il mio fascicolo 0 0