Skip to main content

Characterization of Wall Temperature Effect during Transition of Hypersonic flow over a Cone By Experiments And Numerical Simulations

Obiettivo

The development of secure and re-usable re-entry vehicle requires the complete control of the heat distribution on its Thermal Protection System (TPS).
During the most critical re-entry phase, the hypersonic flow along the vehicle initiates a laminar boundary layer inside of which most of the transfer phenomena take place (heat, momentum and mass transfer). If at one position of the vehicle, this boundary layer experiences a transition from the laminar to the turbulent regime then at the corresponding position the TPS will receive a sharp increase of the incoming heat flux (minimum 3 times higher). If the vehicle aims to be re-usable, it is mandatory to protect it adequately against this overheat. Therefore Aerospace designer needs to receive the proper information and tools allowing a better prediction and ultimately a better control of the transition in hypersonic regime.
This activity proposes a detailed and careful experimental and numerical data base from six hypersonic facilities and several numerical codes from EU and Russia. The selected configuration will be the one of a sharp cone. The noise level in each facility will be characterised. The probable differences between facility predictions running at seemingly comparable conditions (Mach number, Reynolds number and model dimensions) will be explained.
Various types of numerical simulations including DNS will be carried out to prepare the experimental campaigns. These simulations will be further validated and assess during the activity.
Hypersonic transition will be observed with and without localized control. A deeper understanding of the physics involved in hypersonic transition will be investigated. The challenging solution of the local thermal control of the boundary layer at hypersonic regime will be proposed for future aerospace mission and disseminated in the industrial community.

Invito a presentare proposte

FP7-SPACE-2010-1
Vedi altri progetti per questo bando

Coordinatore

VON KARMAN INSTITUTE FOR FLUID DYNAMICS
Indirizzo
Chaussee De Waterloo 72
1640 Rhode Saint Genese
Belgio

Mostra sulla mappa

Tipo di attività
Research Organisations
Contatto amministrativo
Patrick Rambaud (Prof.)
Contributo UE
€ 119 999

Partecipanti (4)

FEDERALNOE GOSUDARSTVENNOE UNITARNOPREDPRIYATIE TSENTRALNY NAUCHNO- ISSLEDOVATELSKY INSTITUT MACHINOSTROENIYA
Russia
Contributo UE
€ 84 000
Indirizzo
Pionerskaya 4
141070 Korolev

Mostra sulla mappa

Tipo di attività
Research Organisations
Contatto amministrativo
Victor Kudryavtsev (Dr.)
DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV
Germania
Contributo UE
€ 145 000
Indirizzo
Linder Hohe
51147 Koln

Mostra sulla mappa

Tipo di attività
Research Organisations
Contatto amministrativo
Michael Schöpe (Mr.)
SA KHRISTIANOVICH INSTITUTE OF THEORETICAL AND APPLIED MECHANICS OF SIBERIAN BRANCH OF RUSSIAN ACADEMY OFSCIENCE*ITAM OF SB RAS
Russia
Contributo UE
€ 80 000
Indirizzo
Institutskaya 4/1
630090 Novosibirsk

Mostra sulla mappa

Tipo di attività
Research Organisations
Contatto amministrativo
Anatoly Maslov (Prof.)
FEDERAL STATE UNITARY ENTERPRISE THE CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PROF. N.E. ZHUKOVSKY
Russia
Contributo UE
€ 71 000
Indirizzo
Zhukovsky Str 1
140180 Zhukovsky

Mostra sulla mappa

Tipo di attività
Research Organisations
Contatto amministrativo
Alexander Fedorov (Dr.)