Objetivo
My main research interests are in low dimensional topology, symplectic geometry and gauge theory. Over the past 20 years, these fields has seen an explosion of activity due to its relevance to string theory.
As part of my PhD thesis, I proved an equivalence between two 3-manifold invariants coming from Floer theory. These are Perutz's Lagrangian matching invariants and Ozsvath and Szabo's Heegaard Floer theory. Although, Heegaard Floer theory has been studied extensively, Lagrangian matching invariants is a relatively recent theory and it remains to be explored more thoroughly. The set-up of Lagrangian matching invariants gives more emphasis on symplectic techniques, and this offers a different approach to Heegaard Floer theory. My goal is to explore these invariants in more depth and bring in new symplectic techniques to the study of 3-manifolds. As a concrete project along these lines, I have been working with Perutz in extending these invariants to bordered three manifolds for which we apply techniques used in the study of Fukaya categories of symplectic manifolds. As a byproduct, we obtain categorical mapping class group actions.
Another main part of my research is the study of Fukaya categories of Lefschetz fibration on the Hilbert schemes of the A_n type Milnor fibre, a special type quiver variety. This involves Floer theoretic calculations of non-compact Lagrangian submanifolds. The applications of this research has deep connections with conjectures involving the relation of the Fukaya category to geometric representation theory, in particular to Khovanov's combinatorial link invariants.
In addition to the projects described above, I am interested in various structures in low dimensional topology. For example, I proved that every smooth 4-manifold admits a broken Lefschetz fibration. This gives a new calculus of 4-manifolds, which I plan to apply to solve old conjectures about 4-manifolds.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras topología topología simpléctica
- ciencias naturales matemáticas matemáticas puras geometría
- ciencias naturales matemáticas matemáticas puras álgebra geometría algebraica
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
FP7-PEOPLE-2010-RG
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Coordinador
WC2R 2LS London
Reino Unido
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.