Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Floer theoretical invariants of low dimensional manifolds

Objectif

My main research interests are in low dimensional topology, symplectic geometry and gauge theory. Over the past 20 years, these fields has seen an explosion of activity due to its relevance to string theory.
As part of my PhD thesis, I proved an equivalence between two 3-manifold invariants coming from Floer theory. These are Perutz's Lagrangian matching invariants and Ozsvath and Szabo's Heegaard Floer theory. Although, Heegaard Floer theory has been studied extensively, Lagrangian matching invariants is a relatively recent theory and it remains to be explored more thoroughly. The set-up of Lagrangian matching invariants gives more emphasis on symplectic techniques, and this offers a different approach to Heegaard Floer theory. My goal is to explore these invariants in more depth and bring in new symplectic techniques to the study of 3-manifolds. As a concrete project along these lines, I have been working with Perutz in extending these invariants to bordered three manifolds for which we apply techniques used in the study of Fukaya categories of symplectic manifolds. As a byproduct, we obtain categorical mapping class group actions.
Another main part of my research is the study of Fukaya categories of Lefschetz fibration on the Hilbert schemes of the A_n type Milnor fibre, a special type quiver variety. This involves Floer theoretic calculations of non-compact Lagrangian submanifolds. The applications of this research has deep connections with conjectures involving the relation of the Fukaya category to geometric representation theory, in particular to Khovanov's combinatorial link invariants.
In addition to the projects described above, I am interested in various structures in low dimensional topology. For example, I proved that every smooth 4-manifold admits a broken Lefschetz fibration. This gives a new calculus of 4-manifolds, which I plan to apply to solve old conjectures about 4-manifolds.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2010-RG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IRG - International Re-integration Grants (IRG)

Coordinateur

KING'S COLLEGE LONDON
Contribution de l’UE
€ 33 333,33
Adresse
STRAND
WC2R 2LS London
Royaume-Uni

Voir sur la carte

Région
London Inner London — West Westminster
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (1)

Mon livret 0 0