Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Robotics UBIquitous COgnitive Network

Description du projet


Cognitive Systems and Robotics
Self-learning robotic ecology
http://www.fp7rubicon.eu/(s’ouvre dans une nouvelle fenêtre)" target="_blank">RUBICON will create a self-learning robotic ecology, consisting of a network of sensors, effectors and mobile robot devices. Enabling robots to seamlessly operate as part of these ecologies is an important challenge for robotics R&D, in order to support applications such as ambient assisted living, security and so on. Current approaches heavily rely on models of the environment and on human configuration/supervision and lack the ability to smoothly adapt to evolving situations. RUBICON ecology will be able to teach itself about its environment and learn to improve the way it carries out different tasks. The project will reduce the amount of preparation and pre-programming that robotic and/or wireless sensor network solutions require when they are deployed. In addition, RUBICON ecologies will reduce the need to maintain and re-configure already-deployed systems.

This project will create a self-learning robotic ecology, called RUBICON (for Robotic UBIquitous COgnitive Network), consisting of a network of sensors, effectors and mobile robot devices.
Enabling robots to seamlessly operate as part of these ecologies is an important challenge for robotics R&D, in order to support applications such as ambient assisted living, security, etc.
Current approaches heavily rely on models of the environment and on human configuration and supervision and lack the ability to smoothly adapt to evolving situations. These limitations make these systems hard and costly to deploy and maintain in real world applications, as they must be tailored to the specific environment and constantly updated to suit changes in both the environments and in the applications where they are deployed.
A RUBICON ecology will be able to teach itself about its environment and learn to improve the way it carries out different tasks. The ecology will act as a persistent memory and source of intelligence for all its participants and it will exploit the mobility and the better sensing capabilities of the robots to verify and provide the feedback on its own performance.
As the nodes of a RUBICON ecology will mutually support one another's learning, the ecology will identify, commission and fulfil tasks more effectively and efficiently.
The project builds on many years of experience across a world-leading consortium. It combines robotics, multi-agent systems, novelty detection, dynamic planning, statistical and computational neuroscience methods, efficient component & data abstraction, robot/WSN middleware and three robotic test-beds. Validation will take place using two application scenarios
Impact: The project will reduce the amount of preparation and pre-programming that robotic and/or wireless sensor network (WSN) solutions require when they are deployed. In addition, RUBICON ecologies will reduce the need to maintain and re-configure already-deployed systems, so that changes in the requirements of such systems can be easily implemented and new components can be easily accommodated.
The relative intelligence and mobility of a robot, when compared to those of a typical wireless sensor node, means that WSN nodes embedded in a RUBICON ecology can learn about their environment and their domain application, through the 'training' that is provided by the robot. This means that the quality of service which is offered by WSNs can be significantly improved, without the need for extensive human involvement.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-ICT-2009-6
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

CP - Collaborative project (generic)

Coordinateur

UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Contribution de l’UE
€ 537 616,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (9)

Mon livret 0 0