Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-30

Evolving Probabilistic Spiking Neural Networks for Spatio-Temporal Pattern Recognition

Objectif

Spiking neural networks (SNN), considered the third generation of neural networks, are a promising paradigm for the creation of new intelligent ICT and for the study of the brain. This new generation computational models and systems are potentially capable of modelling complex information processes due to their ability to represent and integrate different information dimensions, such as time, space, frequency, phase, and to deal with large volumes of data in an adaptive, self-organising, self-learning way. The progress in this direction has been slow in the past, but now there are more opportunities for a progress to be made and this is the aim of the proposed project. The host organisation, the Institute of Neuro-Informatics (INI), Zurich, has been developing VLSI technologies for implementing SNNs for many years. As it has mainly focused on the hardware development aspects, it is still lacking a theoretical framework for configuring and applying VLSI SNNs to wider computational problems. The contribution of this project and of the incoming researcher Prof. Kasabov will be crucial for making a breakthrough in this domain. The project proposes to devise a theoretical framework and a methodology for the design of novel SNN, namely evolving probabilistic spiking neural networks (epSNN) and evolving probabilistic computational neuro-genetic models (epCNGM) along with their implementation on existing software and hardware platforms at the host organisation INI. The resulting technologies will offer a new way to efficiently solve a wide range of complex spatio-temporal pattern recognition problems, including: audio-visual pattern recognition; EEG brain data analysis; associative memories; neurogenetic cognitive systems. Further applications of the epCNGM are expected to be developed for modelling brain data related to neurodegenerative diseases, such as Alzheimer’s disease. Knowledge will be transferred from the visiting researcher Prof. Kasabov to INI and Europe.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2010-IIF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IIF - International Incoming Fellowships (IIF)

Coordinateur

University of Zurich
Contribution de l’UE
€ 121 352,50
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0