Objectif
"Finite dimensional approximation phenomenon is laying at the crossroads of graph theory, group theory and operator algebras. It helps to understand constant-time algorithms, von Neumann factors and several interesting conjectures on discrete groups.
In a nutshell, finite dimensional approximation means that certain infinite structures, groups, graphs, measurable equivalence relations or algebras can be regarded as limits of finite or finite dimensional objects.
Using the limit notions one can prove theorems in the finite world by looking at the limits, or prove theorems about infinite groups or infinite dimensional algebras by investigating the finite objects.
The theory (and the proposal itself) is closely related to famous problems such as
the Atiyah Conjecture or the Connes Embedding Conjecture.
Gabor Elek, the researcher in the proposal is an expert of this area and made successful research on various branches of finite dimensional approximation theory such as sofic groups, L2-invariants, profinite actions and hypergraph limits.
He proposes to attack several problems of the area. His ultimate goal is to work out a general theory of the subject and to extend the scope of finite dimensional approximation theory to some new areas of mathematics.
Elek currently holds a senior researcher position at the Alfred Renyi Mathematical
Institute of the Hungarian Academy of Sciences. If funded, he intends to build further connections between the Hungarian combinatorics school and European institutions."
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures algèbre
- sciences naturelles mathématiques mathématiques pures analyse mathématique analyse fonctionnelle algèbre d'opérateurs
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes théorie des graphes
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes combinatoire
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
FP7-PEOPLE-2010-IEF
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Coordinateur
1015 Lausanne
Suisse
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.